City University of Hong Kong Course Syllabus

offered by School of Energy and Environment with effect from Semester A2022/23

Part I Course Overv	iew
Course Title:	Energy Efficiency and Conservation Technologies
Course Code:	SEE6102
Course Duration:	One semester
Credit Units:	3
Level:	P6
	☐ Arts and Humanities ☐ Study of Societies, Social and Business Organisations
Proposed Area: (for GE courses only)	Science and Technology
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites: (Course Code and Title)	Nil
Precursors: (Course Code and Title)	Nil
Equivalent Courses : (Course Code and Title)	SEE8112 Energy Efficiency and Conservation Technologies
Exclusive Courses: (Course Code and Title)	Nil

Part II Course Details

1. Abstract

This course aims to teach students the physics and engineering knowledge on energy usage and energy efficiency, especially for building and transportation systems. Operating principles of power transmission and distribution, motors, heating, ventilation and air-conditioning (HVAC), lighting, humidity control, transportation etc. will be taught in class. Advanced energy efficient systems and technologies will be described. Methods to reduce energy consumption will be introduced.

2. Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs	Weighting (if applicable)	Discovery-enriched curriculum related learning outcomes (please tick where appropriate)		
			A1	A2	A3
1.	Solve problems on power transmission, lighting, heat transfer and humidity control	30%	V	1	V
2.	Analyze energy use in building systems	40%		V	1
3.	Analyze energy use in transportation systems	10%		V	
4.	Explore and evaluate advanced and innovative energy- efficient systems and technologies	20%	V	V	V
		100%		•	•

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs)

(TLAs designed to facilitate students' achievement of the CILOs.)

TLA	LA Brief Description		O No.	ı		Hours/week
		1	2	3	4	(if applicable)
1	Lectures to explain key concepts and theories related to energy usage and conservation technologies including thermodynamics, heat transfer, psychrometrics, motors, etc.	√ 	√	V	√	2 hrs/wk
2	In-class demonstrations of systems such as air-conditioner, dehumidifier, lighting etc. to show the students how the principles are applied in real life and to solidify students' concepts with practice	V	V	V	V	0.5 hr/wk
3	Tutorials to teach students how to formulate questions and solve problems about energy usage and efficiency	V	V	V	1	0.5 hr/wk

4. Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

Assessment Tasks/Activities CILO No.			Weighting	Remarks		
	1	2	3	4		
Continuous Assessment: 70%						
Assignment					30%	
Homework with both technical and						
open-ended problems will be given						
regularly to help the students						
consolidate the concepts learned in						
class and also to explore how the						
principles are applied in our daily						
life						
In-class test/quiz					25%	
Problems are given to students to						
solve to demonstrate their						
understanding of the concepts						
Class project					15%	
A hands-on project on energy						
usage where the students will be						
asked to design based on the						
concepts learned in class to						
demonstrate their understanding						
Examination: 30% (duration: 2 hours, if applicable)					T	
					100%	

To pass a course, a student must do ALL of the following:

- 1) obtain at least 30% of the total marks allocated towards coursework (combination of assignments, pop quizzes, term paper, lab reports and/ or quiz, if applicable);
- 2) obtain at least 30% of the total marks allocated towards final examination (if applicable); and
- 3) meet the criteria listed in the section on Grading of Student Achievement.

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Applicable to students admitted in Semester A 2022/23 and thereafter

Assessment Task	Criterion	Excellent	Good	Marginal	Failure
		(A+, A, A-)	(B+, B)	(B-, C+, C)	(F)
1. Assignment	Ability to analyse and solve practical	Able to solve	Able to use the	Can determine the	Not able to use
	problems related to energy usage and	problems without	correct concepts for	relevant equations	the correct
	conservation technologies	any errors	problem solving,	and show some	concept to solve a
			but have errors in	attempt to solve a	problem
			calculation	problem in the	
				correct direction	
2. In-class test/quiz	Ability to analyse and solve questions	Able to solve	Able to use the	Can determine the	Not able to use
	related to energy usage and	problems without	correct concepts for	relevant equations	the correct
	conservation technologies	any errors	problem solving,	and show some	concept to solve a
			but have errors in	attempt to solve a	problem
			calculation	problem in the	
				correct direction	
3. Class project	Ability to formulate, implement and	Good design of	Some parts of the	Some attempts to	Minimal attempt
	analyze hands-on experiments to	experiments with	experiments require	carry out some	to design and
	demonstrate energy use	careful	more careful	tests, with errors in	implement
		implementation	planning and	data analysis	project
		and analyses to	implementation		
		demonstrate			
		energy use			
4. Final exam	Ability to analyse and solve practical	Able to solve	Able to use the	Can determine the	Not able to use
	problems related to energy usage and	problems without	correct concepts for	relevant equations	the correct
	conservation technologies	any errors	problem solving,	and show some	concept to solve a
			but have errors in	attempt to solve a	problem
			calculation	problem in the	
				correct direction	

Applicable to students admitted before Semester A 2022/23

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
1. Assignment	Ability to analyse and solve practical problems related to energy usage and conservation technologies	Able to solve problems without any errors	Able to use the correct concepts for problem solving, but have errors in calculation	Can apply some of the concepts correctly to partially solve the problems	Can determine the relevant equations and show some attempt to solve a problem in the correct direction	Not able to use the correct concept to solve a problem
2. In-class test/quiz	Ability to analyse and solve questions related to energy usage and conservation technologies	Able to solve problems without any errors	Able to use the correct concepts for problem solving, but have errors in calculation	Can apply some of the concepts correctly to partially solve the problems	Can determine the relevant equations and show some attempt to solve a problem in the correct direction	Not able to use the correct concept to solve a problem
3. Class project	Ability to formulate, implement and analyze hands-on experiments to demonstrate energy use	Good design of experiments with careful implementation and analyses to demonstrate energy use	Some parts of the experiments require more careful planning and implementation	Incomplete experimental plans and data analysis	Some attempts to carry out some tests, with errors in data analysis	Minimal attempt to design and implement project
4. Final exam	Ability to analyse and solve practical problems related to energy usage and conservation technologies	Able to solve problems without any errors	Able to use the correct concepts for problem solving, but have errors in calculation	Can apply some of the concepts correctly to partially solve the problems	Can determine the relevant equations and show some attempt to solve a problem in the correct direction	Not able to use the correct concept to solve a problem

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

(An indication of the key topics of the course.)

- Introduction to efficiency
- Power transmission, distribution and quality
- Heating and air-conditioning
- Heat transfer and heat exchange, waste heat recovery
- Humidity and ventilation systems
- Lighting equipments; electronic ballasts
- Electrical appliances; motors
- Energy use in transportation systems

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

Nil

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

1.	ASHRAE, ASHRAE Handbooks, US:Atlanta. (latest revision)
2.	Mitchell, J.W., Braun, J.E., Principles of Heating, Ventilation, and Air Conditioning in
	Buildings, Wileys & Sons, 2013.
3.	Pita, E.G., Refrigeration Principles and Systems, Business News Publishing Company,
	1991.
4.	Szokolay, S.V., Introduction to Architectural Science: the Basis of Sustainable Design,
	Routledge, 2014.
5.	Hundy, G.F., Trott, A.R., Welch, T.C. Refrigeration and Air-conditioning, 4 th edition,
	Elsevier, 2008.
6.	Çengel, Y.A., Turner, R.H., Cimbala J. M., Fundamentals of Thermal-Fluid Sciences,
	Third edition, McGraw Hill, 2008.
7.	Thumann, A., Mehta, D. P., Handbook of Energy Engineering, 7 th edition, CRC Press,
	2013.
8.	CIBSE (Chartered Institution of Building Services Engineers). CIBSE guides. (latest
	revision).
9.	EMSD. Code of Practice for Energy Efficiency of Air Conditioning Installations.
	(latest revision)
10.	EMSD. Code of Practice for Energy Efficiency of Electrical Installations. (latest
	revision)
11.	EMSD. Code of Practice for Energy Efficiency of Escalator Installations. (latest
	revision)
12.	EMSD. Code of Practice for Energy Efficiency of Lighting Installations. (latest
	revision)
13.	EMSD. Hong Kong Energy End-use Data (latest version)
14.	EMSD. Performance-based Building Energy Code. (latest revision)
15.	EMSD. Voluntary Energy Efficiency Labelling Scheme (EELS) (latest revision)

- 16. | 1. Hong Kong Government Architecture Services Department website: http://www.archsd.gov.hk/
 - 2. Hong Kong Government Electrical & Mechanical Services Department website: http://www.emsd.gov.hk/
 - 3. Sustainable Development Unit website: http://www.susdev.gov.hk/html/en/index.htm
 - 4. Energy Design Information website: http://www.energydesignresources.com