City University of Hong Kong Course Syllabus

offered by School of Energy and Environment with effect from Semester A 2022/23

Part I Course Overview

Course Title:	Data Analysis in Environmental Applications
Course Code:	SEE5211
Course Duration:	1 Semester
Credit Units:	3 credits
Level:	P5
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites : (Course Code and Title)	Nil
Precursors : (Course Code and Title)	Nil
Equivalent Courses : <i>(Course Code and Title)</i>	SEE8212 Data Analysis in Environmental Applications
Exclusive Courses: (Course Code and Title)	Nil

1. Abstract

The course will provide students with knowledge in using statistical methods in environmental science. These analysis methods such as probability distributions, parametric, tests of significance against non-parametric tests, regression analysis and variance analysis etc. are very helpful for students to understand the physical processes occurring in the environment, and to work on climate prediction.

2. Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs	Weighting (if applicable)	Discov curricu learnin	lum rel	lated
			(please approp	tick tiate)	where
			Al	A2	A3
1.	Understand the concepts of basic statistical methods	20%	\checkmark		\checkmark
2.	Use probability distributions, parametric, tests of significance against non-parametric tests, regression analysis and variance analysis methods to describe environmental datasets and solve environmental problems creatively	30%		~	~
3.	Use correlation method to analyze environmental datasets and discover the linkage between the data results and with environmental problems	35%		~	~
4.	Apply these methods creatively to explain the basic physical processes in environmental science	15%	~	~	~
		100%			

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs)

(TLAs designed to facilitate students' achievement of the CILOs.)

TLA	Brief Description		LON	No.		Hours/week	(if
		1	2	3	4	applicable)	
Lecture	Explain numerical method of describing	\checkmark	\checkmark	\checkmark	~		
	environmental data.						
Tutorials	Apply theories and concepts on practical examples	\checkmark	\checkmark	✓	\checkmark		
Hands-on	Require students to use statistical method to		\checkmark	\checkmark	✓		
experiment	describe the characteristic of air pollutant						
	concentration or other environmental datasets						

4. Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

Assessment Tasks/Activities	CILO No.				Weighting	Remarks
	1	2	3	4		
Continuous Assessment: _60	Continuous Assessment: 60 %					
In-class Quizzes	\checkmark	\checkmark	\checkmark	\checkmark	20%	
Hands-on experiment		\checkmark	✓	✓	20%	
Mid-term exam	✓	\checkmark	✓	✓	20%	
Examination:40% (duration: 2 hrs , if applicable)						
					100%	

Examination duration: 2 hrs

Percentage of coursework, examination, etc.: 60% by coursework (assignments, mid-term exam, term paper); 40% by final exam

Notes: Each student are required to pick up one energy or environmental related problem (such as air pollutant concentration, weather data, power data, or others) to analyse the data by statistical method and computational tool (i.e. Python programming). They need to write a program and submit a report to present their findings, outcomes and conclusion. Their personal recommendation to address the problem is also needed.

To pass a course, a student must do ALL of the following:

- 1) obtain at least 30% of the total marks allocated towards coursework (combination of assignments, pop quizzes, term paper, lab reports and/ or quiz, if applicable);
- 2) obtain at least 30% of the total marks allocated towards final examination (if applicable); and
- 3) meet the criteria listed in the section on Grading of Student Achievement.

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Applicable to students admitted in Semester A 2022/23 and thereafter

Assessment Task	Criterion	Excellent	Good	Marginal	Failure
		(A+, A, A-)	(B+, B)	(B-, C+, C)	(F)
1. In-Class Quizzes	Ability to use the	Excellent analysis and	Good analysis and	Marginally acceptable	Poor analysis and
	statistical concepts and	problem-solving skills	problem-solving skills	analysis and	problem-solving skills
	knowledge to analyse and	to demonstrate	to demonstrate good	problem-solving skills	and are barely able to
	solve the energy and	in-depth	understanding of	to demonstrate some	demonstrate an
	environmental related	understanding of	probability, parameter	understanding of	understanding of
	application problems	probability, parameter	estimation, random	probability, parameter	probability, parameter
		estimation, random	variable, confidence	estimation, random	estimation, random
		variable, confidence	internal and	variable, confidence	variable, confidence
		internal and	hypothesis testing,	internal and	internal and
		hypothesis testing,	inferences involving	hypothesis testing,	hypothesis testing,
		inferences involving	one and two	inferences involving	inferences involving
		one and two	populations, simple	one and two	one and two
		populations, simple	linear regression,	populations, simple	populations, simple
		linear regression,	analysis of variance	linear regression,	linear regression,
		analysis of variance	and goodness-of-fit	analysis of variance	analysis of variance
		and goodness-of-fit	test.	and goodness-of-fit	and goodness-of-fit
		test.		test.	test.
2. Mid-term	Ability to use the	Excellent analysis and	Good analysis and	Marginally acceptable	Poor analysis and
	statistical concepts and	problem-solving skills	problem-solving skills	analysis and	problem-solving skills
	knowledge to analyse and	to demonstrate	to demonstrate good	problem-solving skills	and are barely able to
	solve the energy and	in-depth	understanding of	to demonstrate some	demonstrate an
	environmental related application problems	understanding of	probability,	understanding of	understanding of
	application problems	probability,	population,	probability,	probability,
		population,	distributions random	population,	population,
		distributions random	variable (discrete &	distributions random	distributions random
		variable (discrete &	continuous).	variable (discrete &	variable (discrete &
		continuous).		continuous).	continuous).

3. Hands-on experiment	Capacity for self-directed	Excellent report	Good report writing	Marginally acceptable	Poor report writing
	learning in exploring the	writing and no	and minor problems	report writing and	and little
	energy and environmental	difficulties in	with syntax. Programs	numerous problems	understanding of
	problems, and to analyse	identifying syntax	are structured	1	Python syntax.
	the data using Python	errors. Programs	correctly but some of	are somewhat	Programs are
		conform to standard	the output are	relevant but cannot	unrelated to the
		Python style and give	incorrect. The energy	solve the problem.	problem.
		the correct output.	and/or environmental	*	procient
		The energy and/or	problems can be	recommendations are	
		environmental	solved basically, and	all missing.	
		problems can be	some	an moong.	
		solved creatively and	recommendations are		
		innovatively by	provided and		
		providing a very	discussed.		
		comprehensive			
		recommendation.			
4. Examination	Ability to explain	Excellent analysis and	Good analysis and	Marginally acceptable	Poor analysis and
	numerical method of	problem-solving skills	problem-solving skills	analysis and	problem-solving skills
	describing environmental	to demonstrate	to demonstrate good	problem-solving skills	and are barely able to
	data.	in-depth	understanding of	to demonstrate some	demonstrate an
		understanding of	probability, parameter	understanding of	understanding of
		probability, parameter	estimation, random	probability, parameter	probability, parameter
		estimation, random	variable, confidence	estimation, random	estimation, random
		variable, confidence	internal and	variable, confidence	variable, confidence
		internal and	hypothesis testing,	internal and	internal and
		hypothesis testing,	inferences involving	hypothesis testing,	hypothesis testing,
		inferences involving	one and two	inferences involving	inferences involving
		one and two	populations, simple	one and two	one and two
		populations, simple	linear regression,	populations, simple	populations, simple
		linear regression,	analysis of variance	linear regression,	linear regression,
		analysis of variance	and goodness-of-fit	analysis of variance	analysis of variance
		and goodness-of-fit	test.	and goodness-of-fit	and goodness-of-fit
		test.		test.	test.

Applicable to students admitted before Semester A 2022/23

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
1. In-Class Quizzes	Ability to use the statistical concepts and knowledge to analyse and solve the energy and environmental related application problems	High	Significant	Moderate	Basic	Not even reaching marginal levels
2. Mid-term	Ability to use the statistical concepts and knowledge to analyse and solve the energy and environmental related application problems	High	Significant	Moderate	Basic	Not even reaching marginal levels
3. Hands-on experiment	Capacity for self-directed learning in exploring the energy and environmental problems, and to analyse the data using Python	High	Significant	Moderate	Basic	Not even reaching marginal levels
4. Examination	Ability to explain numerical method of describing environmental data.	High	Significant	Moderate	Basic	Not even reaching marginal levels

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

(An indication of the key topics of the course.)

- 1. Probability distributions
 - (1) Introduction concepts of probability, random variables and probability distributions.
 - (2) Probability distributions (discrete and continuous): normal distribution, Central Limit theorem, *t*-distribution, and Fisher's F-distribution, gamma and other distributions.
 - (3) Application of probability distributions in environmental data analysis, e. g. particle size distributions, detection limit of environmental analysis.
- 2. Tests of hypothesis
 - (1) Type I error, Type II error, level of significance,
 - (2) One tailed tests and two tailed tests. Parametric tests of significance against non-parametric tests and Monte Carlo methods.
 - (3) Application of test of hypothesis in environmental data analysis, e.g. compliance of environmental standards etc.
- 3. Regression analysis
 - (1) Simple regression estimation of regression line, analysis of variance, confidence interval for regression coefficients, and confidence band for regression line.
 - (2) Multiple regression estimation of regression plane, partial correlation, and multiple correlation.
 - (3) Nonlinear regression
 - (4) Application of regression analysis in environmental data, e.g. calibration of environmental analysis.
- 4. Time series
 - (1) Introduction- definitions of stochastic processes: purely random process, stationary process, auto-regressive process and non-stationary process.
- 5. Principal Component Analysis (SEE8212)
 - (1) Introduction of Principal Components Analysis- rotated and complex empirical orthogonal functions, singular Value Decomposition, canonical Correlation Analysis.
 - (2) Application of PCA on complicated environmental data sets, e.g. source identification of air pollutants etc.

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

1.	Statistics: The exploration and analysis of data, 7 th Edition, 2012. Roxy Peck Jay L
	DeVore. ISBN-10:0840058012.

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

1.	Statistics for Environmental Engineers, 2nd Edition, 2002. Linfield C. Brown, Paul
	Mac Berthouex, ISBN: 1566705924