City University of Hong Kong Course Syllabus

offered by School of Data Science with effect from Semester A 2023/24

Part I Course Over	view
Course Title:	Data Mining and Knowledge Discovery
Course Code:	SDSC8009
Course Duration:	One Semester
Credit Units:	3
Level:	R8
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites: (Course Code and Title)	Nil
Precursors : (Course Code and Title)	Basic Machine Learning Knowledge, Python Programming
Equivalent Courses : (Course Code and Title)	Nil
Exclusive Courses: (Course Code and Title)	Nil

Part II Course Details

1. Abstract

Data mining studies algorithms and computational paradigms that allow computers to find patterns and regularities in dataset, perform predictions and generally improve the performance through interaction with data. It is currently regarded as the key element of a more general knowledge discovery process that deals with extracting useful knowledge from raw data. This course will offer students advanced algorithms for mining various types of complex data, especially imaging data.

The curriculum will start with the classical data mining methods for tabular and graph data and next move into data-driven imaging data mining with advanced algorithms. We will review different model architectures and learning algorithms such as clustering, classification and graph neural networks. We will go into a few research topics including self-supervised machine learning and various real-world applications.

2. Course Intended Learning Outcomes (CILOs)

No.	CILOs	Weighting* (if applicable)	Discov curricu learnin	ılum re	lated
			(please		where
			approp		T
			A1	A2	<i>A3</i>
1.	Understand essential data mining algorithms	15%	✓		
2.	Understand basics of graph mining	15%	✓		
3.	Understand how to implement data mining algorithms introduced in this course.	20%	√		
4.	Apply algorithms taught in this course into emerging real-world problems.	20%	√	√	√
5.	Demonstrate novel knowledge extracted from data of considered real problems through utilizing algorithms taught in this course	30%	✓	√	√
		100%			

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs)

TLA	Brief Description	CIL	CILO No.			Hours/week (if	
		1	2	3	4	5	applicable)
Lecture	- large class activity	✓	✓	✓	✓	✓	39 hours/sem
	- questions and discussion						

4. Assessment Tasks/Activities (ATs)

Assessment Tasks/Activities	CILO No.				Weighting*	Remarks	
	1	2	3	4	5		
Continuous Assessment: 100 %							
Group Project	✓	✓	✓	✓	✓	40%	
A collaborative research project							
based on taught concepts.							
Individual Assignment	✓	✓	✓	✓		30%	
Four assignments for testing the							
understanding of a sub-set of							
taught concepts and their							
implementation.							
Take-home Test		✓	√	√	√	30%	
An open book and notes						3070	
examination aiming at assessing							
the understanding of the overall							
materials and some open							
questions for demonstrating the							
capability of the further							
exploration.							
Examination:0 % (duration: , if applicable)							

100%

5. Assessment Rubrics

Applicable to students admitted in Semester A 2022/23 and thereafter

Assessment Task	Criterion	Excellent (A+, A, A-)	Good (B+, B)	Marginal (B-, C+, C)	Failure (F)
1. Group Project	Application of class materials and teamwork		Significant	Basic	Not even reaching marginal levels
2. Individual Assignment	Application of class materials	High	Significant	Basic	Not even reaching marginal levels
3. Take-home Test	Understanding of class materials	High	Significant	Basic	Not even reaching marginal levels

Applicable to students admitted before Semester A 2022/23

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
1. Group Project	Application of class materials and teamwork	High	Significant	Moderate	Basic	Not even reaching
	and teamwork					marginal levels
2. Individual Assignment	Application of class materials	High	Significant	Moderate	Basic	Not even reaching marginal levels
3. Take-home Test	Understanding of class materials	High	Significant	Moderate	Basic	Not even reaching marginal levels

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

- Data Mining Essentials
- Dimensionality Reduction and Visualization
- Clustering and Classification
- Graph Mining
- Introduction to Neural Networks
- Network Embedding
- Graph Neural Networks
- Selected Data Mining Application: Imaging Data Science
- Data Mining Software

2. Reading List

2.1 Compulsory Readings

1.	Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction to Data Mining (2 nd
	Edition), Pearson, 2018.
2.	Lecture notes
3.	Journal articles and conference papers selected by the instructor

2.2 Additional Readings

NIL