City University of Hong Kong Course Syllabus

offered by School of Data Science with effect from Semester A 2022/23

Part I Course Overview

Course Title:	Deep Learning
Course Code:	SDSC8007
Course Duration:	One Semester
Credit Units:	3
Level:	R8
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites:	Nil
Precursors:	Nil
Equivalent Courses:	Nil
Exclusive Courses:	Nil

Part II Course Details

1. Abstract

This course provides students with a systematic study of deep learning. Topics include shallow and deep neural networks, deep fully connected and structured neural networks, universality of approximation, convolutions and Fourier transform, deep convolutional neural networks, deep recursive neural networks, gradient descent and stochastic gradient descent, backpropagation and automatic differentiation, learning ability of deep learning algorithms, design of deep neural network architectures.

2. Course Intended Learning Outcomes (CILOs)

No.	CILOs	Weighting*	Discov	ery-ent	riched
		(if	curricu	lum rel	lated
		applicable)	learnin	g outco	omes
			(please	tick	where
			approp	riate)	
			Al	A2	A3
1.	State rigorously fundamental principles, ideas,	20%	\checkmark		
	theories, and methods of deep learning				
2.	Distinguish and compare various deep neural network	20%	\checkmark		
	architectures				
3.	Apply common deep learning methods and algorithms	40%	\checkmark	\checkmark	\checkmark
	to datasets				
4.	Solve some practical problems by existing deep learning	20%	\checkmark	\checkmark	\checkmark
	methods and designing new algorithms				
•	· · · · ·	100%		•	

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs)

TLA	Brief Description		CILO No.				Hours/week (if
			2 3 4			applicable)	
Lecture	Learning through teaching is primarily based on lectures and demonstrations.	~	~	~	✓		39 hours in total
Mini-project	A typical deep learning problem will be given to students to solve. The students are expected to tackle the given problem, write a report and give a presentation. This learning activity will be mainly student-led but with instructor's structural guidance.	✓	✓	V	V		After class

4. Assessment Tasks/Activities (ATs)

Assessment Tasks/Activities	CILO No.				Weighting*	Remarks	
	1	2	3	4			
Continuous Assessment: <u>100</u> %							
Test	\checkmark	\checkmark	\checkmark	\checkmark		40%	
Questions are designed for the							
first part of the course to see							
how well the students have							
learned the basic concepts,							
fundamental theory, deep neural							
network architectures, deep							
learning methods and							
algorithms, and applications of							
deep learning algorithms to							
some datasets.							
Mini-Project	\checkmark	\checkmark	\checkmark	\checkmark		30%	
The project provides students							
chances to demonstrate how							
well they have achieved their							
intended learning outcomes.							
Mini-Project Presentation	\checkmark	\checkmark	\checkmark	\checkmark		30%	
The project provides students							
chances to demonstrate how							
well they have achieved their							
intended learning outcomes.							
						100%	

5. Assessment Rubrics

Applicable to students admitted in Semester A 2022/23 and thereafter

Assessment Task	Criterion	Excellent	Good	Marginal	Failure
		(A+, A, A-)	(B+, B)	(B-, C+, C)	(F)
1. Test	Ability to understand and apply the fundamental theory, deep neural network architectures, and deep learning algorithms.	High	Significant	Basic	Not even reaching marginal level
2. Mini-Project Report	Ability to demonstrate the understanding of the basic concepts, fundamental theory, deep learning methods, and applications of deep learning algorithms to some datasets.	High	Significant	Basic	Not even reaching marginal level
3.Mini-Project Presentation	Ability to demonstrate how well the intended learning outcomes are achieved.	High	Significant	Basic	Not even reaching marginal level

Applicable to students admitted before Semester A 2022/23

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
1. Test	Ability to understand and apply the fundamental theory, deep neural network architectures, and deep learning algorithms.	High	Significant	Moderate	Basic	Not even reaching marginal level
2. Mini-Project Report	Ability to demonstrate the understanding of the basic concepts, fundamental theory, deep learning methods, and applications of deep learning algorithms to some datasets.	High	Significant	Moderate	Basic	Not even reaching marginal level
3.Mini-Project Presentation	Ability to demonstrate how well the intended learning outcomes are achieved.	High	Significant	Moderate	Basic	Not even reaching marginal level

Part III Other Information

1. Keyword Syllabus

Activation functions including sigmoidal functions and rectified linear unit, shallow neural networks and universality of approximation of functions, deep fully connected neural networks with full connection matrices, convolutions and Fourier transform, deep convolutional neural networks with convolutional matrices, representation and approximation by deep convolutional neural networks, deep recursive neural networks with structured matrices, pooling, gradient descent and stochastic gradient descent, backpropagation and automatic differentiation, learning ability in terms of the number of hidden neurons and depth of deep neural networks, design of deep neural network architectures according to various applications of deep learning.

2. Reading List

2.1 Compulsory Readings

1. Lecture slides and other related material

2.2 Additional Readings

1. I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, MIT Press, 2016.