City University of Hong Kong Course Syllabus

offered by School of Data Science with effect from Semester B 2022/23

Part I Course Overv	view
Course Title:	Machine Learning
Course Code:	SDSC8003
Course Duration:	One Semester
Credit Units:	3
Level:	R8
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites : (Course Code and Title)	Nil
Precursors: (Course Code and Title)	Nil
Equivalent Courses: (Course Code and Title)	Nil
Exclusive Courses: (Course Code and Title)	Nil

1

Part II Course Details

1. Abstract

This course focuses on machine learning models and their deployments. Topics include neural networks, convolutional neural networks, self-attention, transformers, clustering, dimensionality reduction, autoencoder, generative adversarial networks, self-supervision, adaptation, on-device machine learning, and federated learning.

2. Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs	Weighting*		ery-eni	
		(if	curricu	ılum rel	lated
		applicable)	learnin	g outco	omes
			(please	e tick	where
			approp	riate)	
			A1	A2	A3
1.	Understand fundamental principles, ideas, and theories of	20%	✓		
	machine learning and deep learning				
2.	Familiarize machine learning and deep learning methods	20%	✓		
	and their computational algorithms				
3.	Apply existing machine learning methods and design new	30%	√	✓	✓
	algorithms to practical datasets				
4.	Understand principles and research on practices to deploy	30%	√	✓	✓
	machine learning models to systems				
·		100%			

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs)

TLA	Brief Description	CIL	CILO No.			Hours/week	
		1	2	3	4		(if applicable)
Lecture	Learning through teaching is	✓	✓	✓	✓		39 hours in
	primarily based on lectures and						total
	demonstrations.						

4. Assessment Tasks/Activities (ATs)

Assessment Tasks/Activities	CILO No.				Weighting*	Remarks		
	1	2	3	4				
Continuous Assessment: _70_%								
Programming Test	✓	√	√				35%	
Open-book Python								
programming test to assess								
students' ability to apply								
machine learning methods on								
given datasets								
Research Presentation	\checkmark	√		✓			35%	
Group research to demonstrate								
the students' understanding								
and research on machine								
learning models and systems								
Examination:30% (duration: 2 hours , if applicable)								
<u>Examination</u>	\checkmark	✓	✓	\checkmark			30%	
Questions are designed to see								
how well the students have								
learned the basic concepts,								
fundamental theory, and								
applications of learning								
algorithms.								
							100%	

5. Assessment Rubrics

Applicable to students admitted in Semester A 2022/23 and thereafter

Assessment Task	Criterion	Excellent	Good	Marginal	Failure
		(A+, A, A-)	(B+, B)	(B-, C+, C)	(F)
1. Programming Test	Ability to learn the basic concepts, apply methods and algorithms of machine learning.	High	Moderate	Basic	Not even reaching marginal level
2. Research Presentation	Ability to conduct and demonstrate research on machine learning models and systems.	High	Moderate	Basic	Not even reaching marginal level
3. Examination	Ability to solve learning tasks using machine learning methods.	High	Moderate	Basic	Not even reaching marginal level

Applicable to students admitted before Semester A 2022/23

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
1. Programming Test	Ability to learn the basic concepts, apply methods and algorithms of machine learning.	High	Significant	Moderate	Basic	Not even reaching marginal level
2.Research Presentation	Ability to conduct and demonstrate research on machine learning models and systems.	High	Significant	Moderate	Basic	Not even reaching marginal level
3. Examination	Ability to solve learning tasks using machine learning methods.	High	Significant	Moderate	Basic	Not even reaching marginal level

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

Neural networks, convolutional neural networks, self-attention, transformers, clustering, PCA, autoencoder, generative adversarial networks, self-supervision, adaptation, model compression, and federated learning.

2. Reading List

2.1 Compulsory Readings

1.	Lecture slides

2.2 Additional Readings

1.	I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, MIT Press, 2016.
2.	The Elements of Statistical Learning, by Hastie, Tibshirani, Friedman, Springer 2001