City University of Hong Kong Course Syllabus

offered by School of Data Science with effect from Semester A 2022/23

Part I Course Over	view
Course Title:	Stochastic Optimization for Machine Learning
Course Code:	SDSC6015
Course Duration:	One semester
Credit Units:	3
Level:	P6
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites: (Course Code and Title)	Nil
Precursors: (Course Code and Title)	Nil
Equivalent Courses: (Course Code and Title)	Nil
Exclusive Courses: (Course Code and Title)	Nil

Part II Course Details

1. Abstract

Stochastic optimization plays a vital role in machine learning where the full batch of data is either unavailable or too large to process in practice. This course introduces the theoretical foundations and algorithmic development in this area. The topics will start form the basic convex optimization theories as well as numerical methods, and we then focus on the stochastic approximation for stochastic optimization and its various accelerations in many statistical and machine learning models, supplemented with the most recent progress from research literature. Basic theoretic understanding of these stochastic optimization algorithms will also be explained. After this class, the students with some preliminaries of classic optimizations and probability theories are expected to transit into the new optimization world in the machine learning, in which significant progresses have been made during the past decades.

2. Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs	Weighting (if	Discov curricu	-	
		applicable)	learnin	g outco	omes
			(please	tick	where
			approp	riate)	•
			A1	A2	<i>A3</i>
1.	Understand the methodologies and the underlying mathematical structures in optimization	20%	~		
2.	Identify the essential principles and nature of stochastic approximation for modern machine learning optimization problem	25%		√	
3.	Analyze basic forms of stochastic optimization and learning algorithms across various machine learning models.	30%		✓	
4.	Develop and analyze the practical algorithms for related optimization problems.	25%			✓
		100%			

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs)

(TLAs designed to facilitate students' achievement of the CILOs.)

TLA	Brief Description	CIL	CILO No.			Hours/week (if applicable)	
		1	2	3	4		
Lecture	Learning through teaching is	✓	✓	✓	✓		26 hours/sem
	primarily based on lectures and						
	demonstrations.						
Tutorial	Assist students with tutorial		✓	✓	✓		13 hours/sem
	questions, computer						
	programming of implementing						
	algorithms, and the in-depth						
	discussion.						

4. Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

ssessment Tasks/Activities CILO No.				Weighting	Remarks	
	1	2	3	4		
Continuous Assessment: 60 %	1		1			ı
Test/Quiz	✓	✓	✓		30%	
Students need to participate actively in						
in-class quizzes and tests designed to						
facilitate their understanding of						
knowledge taught in class.						
Take-home Assignment		✓	✓	✓	30%	
Students will critically analyze, apply and						
develop the theoretical concepts and						
quantitative skills by solving the						
individual samples of questions and						
exercises.						
Examination: 40 % (duration: 2 hours, if a	pplica	able)				
<u>Examination</u>	✓	✓	✓	✓	40%	
Students will be assessed via the						
examination their understanding of						
concepts learned in class, textbooks,						
reading materials and their ability to apply						
subject-related knowledge.						
		1				
	-				100%	

For a student to pass the course, at least 30% of the maximum mark for the examination should be obtained.

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Applicable to students admitted in Semester A 2022/23 and thereafter

Assessment Task	Criterion	Excellent (A+, A, A-)	Good (B+, B)	Marginal (B-, C+, C)	Failure (F)
1. Test/Quiz	Demonstrate the learning process, the intellectual ability and achievements of understanding the materials in lecture time.	High	Significant	Moderate	Not even reaching marginal levels
2. Take-home Assignment	Show the capability to apply the knowledge and methods to practical exercises and the generalization to new context.	High	Significant	Moderate	Not even reaching marginal levels
3. Examination	Present the overall academic performance in understanding fundamentals and achieving measurable progress in the taught discipline.	High	Significant	Moderate	Not even reaching marginal levels

Applicable to students admitted before Semester A 2022/23

Assessment Task	Criterion	Excellent (A+, A, A-)	Good (B+, B, B-)	Fair (C+, C, C-)	Marginal (D)	Failure (F)
1. Test/Quiz	Demonstrate the learning process, the intellectual ability and achievements of understanding the materials in lecture time.	High	Significant	Moderate	Basic	Not even reaching marginal levels
2. Take-home Assignment	Show the capability to apply the knowledge and methods to practical exercises and the generalization to new context.	High	Significant	Moderate	Basic	Not even reaching marginal levels
3. Examination	Present the overall academic performance in understanding fundamentals and achieving measurable progress in the taught discipline.	High	Significant	Moderate	Basic	Not even reaching marginal levels

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

(An indication of the key topics of the course.)

- Machine Learning models for optimization.
- Convex optimization theory: gradient and sub-gradient descent, mirror descent, acceleration; constrained optimization; primal-dual; ADMM.
- Stochastic convex optimization: stochastic gradient descent; Nesterov acceleration; stochastic momentum method: Adagrad, RMSprop, Adam; stochastic mirror descent; noise-reduction technique.
- Python programming for related algorithms.
- Selected Topics that arise from stochastic optimization in adversarial training, reinforcement learning, etc.

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

	▼
	L Lactura nota
1 1.	Lecture note

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

1.	First-Order and Stochastic Optimization Methods for Machine Learning
	Author(s): Guanghui Lan
	Series: Springer in the Data Sciences
	Publisher: Springer Nature, Year: 2020
2.	Optimization Methods for Large-Scale Machine Learning. SIAM Review Vol. 60, No. 2, pp.
	223–311, 2018
3.	ADAM: a method for stochastic optimization, Diederik P. Kingma, Jimmy Ba, ICLR 2015