City University of Hong Kong Course Syllabus

offered by College/School/Department of Physics with effect from Semester A 2022/23

Part I Course Overview	,
Course Title:	Advanced Electrodynamics
Course Code:	PHY8506
Course Duration:	One semester
Credit Units:	3
Level:	R8
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites : (Course Code and Title)	Nil
Precursors : (Course Code and Title)	PHY2191 Electricity and Magnetism PHY3205 Electromagnetism
Equivalent Courses : (Course Code and Title)	Nil
Exclusive Courses: (Course Code and Title)	PHY6506 Advanced Electrodynamics

Part II Course Details

1. Abstract

This course aims to equip graduate students with advanced concepts and mathematical methods of electrodynamics that are necessary to conduct research in related fields such as photonics and metamaterials. The course will cover the fundamentals of electrodynamics including electromagnetic wave propagations in homogeneous materials, wave behaviors at a surface, plasmon, waveguides, cavities, scattering and radiation phenomena. In addition, the course will introduce applications related to electrodynamics, such as photonic crystals and metamaterials.

2. Course Intended Learning Outcomes (CILOs)

No.	CILOs	Weighting* (if applicable)	curricu learnin	very-enulum rel	lated omes
			(please	tick riate)	
			A1	A2	A3
1.	Recognize the importance of electrodynamics	10%	√		
2.	Understand the key concepts of electrodynamics	20%	√		
3.	Understand the physics mechanisms underlying electrodynamic phenomena	20%		√	
4.	Apply analytical methods to solve practical problems	40%		√	
5.	Develop electrodynamic systems with specific wave properties	10%		√	√
		100%		•	

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs)

TLA	Brief Description		O No.		Hours/week (if			
		1	2	3	4	5		applicable)
Lectures	Explain concepts and introduce mathematical methods	√	√	√	√	√		2
Tutorials	Explain the mechanisms of some electrodynamic systems and how to solve electrodynamic problems	√	√	√	V	√		1

4. Assessment Tasks/Activities (ATs)

Assessment Tasks/Activities	CILO No.					Weighting*	Remarks
	1	2	3	4	5		
Continuous Assessment: 50%							
Assignments	√	√	√	√	\checkmark	50%	
Examination: 50% (duration: 2 hours)							
	√	√	√	\checkmark	\checkmark	50%	
	•		•			100%	

5. Assessment Rubrics

Applicable to students admitted in Semester A 2022/23 and thereafter

Assessment Task	Criterion	Excellent	Good	Marginal	Failure
		(A+, A, A-)	(B+, B)	(B-, C+, C)	(F)
1. Assignments	Understanding the key concepts and principles; Ability to explain the physical mechanisms of electrodynamic phenomena; Ability of applying mathematical methods to solve problems.	High	Significant	Basic	Not reaching marginal level
2. Examination	Having an in-depth understanding of electrodynamic concepts and principles; Ability of applying analytical methods to solve practical problems independently.	High	Significant	Basic	Not reaching marginal level

Applicable to students admitted before Semester A 2022/23

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure	
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)	
1. Assignments	Understanding the key concepts and principles; Ability to explain the physical mechanisms of electrodynamic phenomena; Ability of applying mathematical methods to solve problems.	High	Significant	Moderate	Basic	Not read marginal level	ching
2. Examination	Having an in-depth understanding of electrodynamic concepts and principles; Ability of applying	High	Significant	Moderate	Basic	Not read marginal level	ching

analytical methods to solve			
practical problems			
independently.			

Part III Other Information

1. Keyword Syllabus

- Maxwell's Equations
- O Displacement current, vector and scalar potentials, gauge transformation, Green's functions
- Conservation Laws
- Poynting's theorem, conservation of energy and momentum, Maxwell's stress tensor
- Plane waves and wave propagation
- Impedance and admittance, polarizations, Stokes parameters, spin and orbital angular momentums, dispersion, Causality, Kramers-Kronig relations, plasmon
- Waveguides, transmission line, and resonant cavities
- Fields at surface and within a conductor, modes in cylindrical and rectangular waveguides, transmission lines, resonant cavities, quality factor
- Radiation
- Multipole expansions, electric dipole, magnetic dipole and electric quadrupole
- Scattering and diffraction
- Rayleigh scattering, Mie scattering, optical theorem, scalar and vectorial diffraction theory
- Electromagnetic waves in artificial structures and materials
- o photonic crystals, photonic band theory, metamaterials, effective medium theory

2. Reading List

2.1 Compulsory Readings

1.	J. D. Jackson, <i>Classical Electrodynamics</i> , 3 rd edition, Wiley & Sons, 1999.
2.	
3.	

2.2 Additional Readings

1.	L. D. Landau and E. M. Lifshitz, <i>Electrodynamics of Continuous Media</i> , 2 nd edition,
	Butterworth-Heinemann, 1984.
2.	C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley
	& Sons, 1983.
3.	J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, <i>Photonic Crystals: Molding</i>
	the Flow of Light, 2 nd edition, Princeton University Press, 2008.
4.	L. Solymar and E. Shamonina, Waves in Metamaterials, Oxford University Press, 2009.