City University of Hong Kong Course Syllabus

offered by Department of Management Sciences with effect from Semester A 2022 / 2023

Part I Course Over	view
Course Title:	Foundations of Management Science
Course Code:	MS8953
Course Duration:	One Semester
Credit Units:	3
Level:	R8
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites: (Course Code and Title)	Nil
Precursors : (Course Code and Title)	Nil
Equivalent Courses : (Course Code and Title)	Nil
Exclusive Courses: (Course Code and Title)	Nil

1

Part II Course Details

1. Abstract

Provide students a comprehensive understanding of linear programming, convex optimization, dynamic programming and stochastic control. Decision making under deterministic and stochastic environments. Applications in inventory control and pricing strategy. This course is designed to introduce fundamental models and technical tools of solving real world problems to PhD students, and to train their original thinking skills and prepare them for advanced research.

2. Course Intended Learning Outcomes (CILOs)

No.	CILOs	Weighting*	Discov	ery-eni	riched
		(if	curricu	lum rel	lated
		applicable)	learnin	g outco	omes
			(please	tick	where
			approp	riate)	
			A1	A2	A3
1.	Formulate problems with linear, convex and dynamic programming models	20%		✓	
2.	Understand the fundamental models of inventory and pricing theory	20%		✓	
3.	Apply the models/theories in practice/research topics	20%		✓	
4.	Able to solve the basic optimization models and analyse the optimal policy of multi-period problem	30%		✓	
5.	Able to create new research ideas	10%			√
		100%			

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs)

TLA	Brief Description		O No.		Hours/week (if		
		1	2	3	4		applicable)
Interactive lecture	During lectures, models and theories of optimization models are explained, and topics will be provided for students for group discussion.	✓	✓	✓	✓		
Outside Classroom Activities	Important recent research papers will be recommended to read after class. Students are required to evaluate, criticize the research paper and create new research ideas in related topics.					√	

4. Assessment Tasks/Activities (ATs)

Assessment Tasks/Activities	CII	CILO No.				Weighting*	Remarks
	1	2	3	4			
Continuous Assessment: 70%	Continuous Assessment: 70%						
Assignments	✓	✓	✓	✓		40%	
Midterm Exam	✓	✓	✓	✓		30%	
Examination: _30_% (duration: 3 hours, if applicable)							
Examination	✓	✓	✓	✓		30%	

100%

5. Assessment Rubrics

Applicable to students admitted in Semester A 2022/23 and thereafter

Assessment Task	Criterion	Excellent	Good	Marginal	Failure
		(A+, A, A-)	(B+, B)	(B-, C+, C)	(F)
1. Assignments	Assignment is designed to enhance students' understanding of the model and skills of applying methodology learnt to the related problems.	High	Significant	Moderate	Not even reaching marginal level
2. Midterm Exam	Assess students' knowledge on the concepts, techniques and ideas learnt in the first half of the semester.	High	Significant	Moderate	Not even reaching marginal level
3. Final Exam	Assess students' knowledge on subject matter and using the techniques to solve the related problems. To test students' creative ideas on related research topics.	High	Significant	Moderate	Not even reaching marginal level

Applicable to students admitted before Semester A 2022/23

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
1. Assignments	Assignment is designed to enhance students' understanding of the model and skills of applying methodology learnt to the related problems.	High	Significant	Moderate	Basic	Not even reaching marginal level
2. Midterm Exam	Assess students' knowledge on the	High	Significant	Moderate	Basic	Not even reaching marginal level

	concepts, techniques and ideas learnt in the first half of the semester.					
3. Final Exam	Assess students' knowledge on subject matter and using the techniques to solve the related problems. To test students' creative ideas on related research topics.	High	Significant	Moderate	Basic	Not even reaching marginal level

Part III Other Information

1. Keyword Syllabus

- Linear Optimization: Formulation, geometry, optimality, simplex method, duality, sensitivity analysis, interior point method, complementary-slackness condition
- Convex Optimization: convexity, epigraph, conjugate function, Lagrangian dual, Newton's method, KKT condition, semi-definite programming
- Dynamic programming, Optimal Control, Newsvendor Problem, Newsvendor Problem with Price-effect, Finite Horizon Inventory Control, Integration of Inventory and Pricing

2. Reading List

2.1 Compulsory Readings

Nil

2.2 Additional Readings

1.	Dimitris Bertsimas and John N.Tsitsikilis: Introduction to Linear Optimization
2.	Boyd, Vandenberghe: Convex Optimization, Cambridge University Press, 2004
3.	D. Bertsekas. Dynamic Programming and Optimal Control. Vol 1. Third Edition. 2005
4.	D. Simchi-Levi. X.Chen and J. Bramel. The Logic of Logistics; Theory, Algorithms, and
	Applications for Logistics and Supply Chain Management. Second Edition. 2005