City University of Hong Kong Course Syllabus

offered by Department of Management Sciences with effect from Semester A 2022/23

Part I Course Over	view
Course Title:	Data Mining
Course Code:	MS6711
Course Duration:	One Semester
Credit Units:	3
Level:	P6
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites: (Course Code and Title)	MS5217 Statistical Data Analysis
Precursors: (Course Code and Title)	Nil
Equivalent Courses: (Course Code and Title)	Nil
Exclusive Courses: (Course Code and Title)	FB6711 Data Mining

1

Part II Course Details

1. Abstract

This course introduces students to a range of popular and practical data mining and machine learning algorithms relevant to business applications. Students are required to perform data analysis using the python programming language. Upon successful completion of this course, students will have acquired the core foundational knowledge in the field, and be well-prepared for a wide variety of careers in data-analytics.

2. Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs	Weighting	Discov	ery-eni	riched
		(if	curricu	ılum rel	ated
		applicable)		g outco	
			(please	e tick	where
			approp	riate)	1
			A1	A2	A3
1.	Demonstrate knowledge of state-of-the-art machine	30%	√	√	✓
	learning / data mining algorithms	3070	,	,	·
2.	Define and formulate real-world data mining problems;				
	prepare the data for data mining projects; execute	30%	✓	✓	✓
	algorithms and interpret outputs.				
3.	Analyze real-world data using python.	40%	✓	✓	✓
		100%			

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3.

Teaching and Learning Activities (TLAs) (TLAs designed to facilitate students' achievement of the CILOs.)

TLA	Brief Description	CILO	O No.			Hours/week (if		
	-	1	2	3		applicable)		
Lectures	Lecturer explains and discusses	✓	✓	✓				
	the concepts, algorithms, of							
	data mining and how to							
	evaluate the quality of the							
	extracted information.							
In-class	Lecturer will demonstrate the	√	√	✓				
activities	use of python in class on							
	selected topics. Students are							
	required to work individually or							
	as a group on simulated or							
	small real data using the							
	programming language.							
	Through these in-class							
	exercises, the lecturer can							
	identify the common problems							
	that students have and give							
	more elaboration as needed.							
	Students can also identify the							
	kinds of mistakes that they have							
	made and learn how to correct							
	them.							
Out-of-Class	Running the data mining	✓	√	✓				
assignments	algorithms on large data set is a							
	very time consuming process. It							
	is not possible to do it regularly in class. Students tackle							
	focused problems based on							
	large business data as							
	out-of-class assignments.							
	Students may work in small							
	groups for these assignments so							
	that they can discuss the							
	problems and come up a							
	solution together.							

Desired	T	./	./	./			\neg
Project	The ultimate aim of the course	•	•	•			
	is to provide students with the						
	specialist knowledge and						
	training to run a business data						
	mining task. Students are given						
	a large data set with described						
	business problem. They are						
	asked to extract useful						
	information related to the set of						
	identified data mining goals for						
	the problem. This is likely to be						
	a semester-long activity.						
	Students need to make use of						
	everything they have learned in						
	this course in order to achieve						
	the goals. They are encouraged						
	to form small groups for the						
	project so that they can analyze						
	the data and run the software						
	together. They can always seek						
	help and advice from the						
	lecturer during the semester.						

4. Assessment Tasks/Activities (ATs)
(ATs are designed to assess how well the students achieve the CILOs.)

Assessment Tasks/Activities	CILO No.						Weighting	Remarks
	1	2	3					
Continuous Assessment:600	Continuous Assessment:60%							
Assignments	✓	✓	✓				10%	
Project	✓	✓	✓				50%	
Examination:40% (duration: 3 Hours, if applicable)								
Examination	√	√	√				40%	
							4000/	

100%

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Applicable to students admitted in Semester A 2022/23 and thereafter

Assessment Task	Criterion	Excellent	Good	Marginal	Failure
		(A+, A, A-)	(B+, B)	(B-, C+, C)	(F)
Assignments	Core concepts and ideas; use of appropriate statistical methods	High	Significant	Moderate	Fail to understand the core concepts
Examination	Core concepts and ideas; use of appropriate statistical methods	High	Significant	Moderate	Fail to understand the core concepts
Project	Core concepts and ideas; use of appropriate statistical methods	High	Significant	Moderate	Fail to understand the core concepts

Applicable to students admitted before Semester A 2022/23

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
Assignments	Core concepts and ideas; use of appropriate statistical methods	High	Significant	Moderate	Basic	Not even reaching marginal levels
Examination	Core concepts and ideas; use of appropriate statistical methods	High	Significant	Moderate	Basic	Not even reaching marginal levels
Project	Core concepts and ideas; use of appropriate statistical methods	High	Significant	Moderate	Basic	Not even reaching marginal levels

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

(An indication of the key topics of the course.)

1. Introduction to data mining

Explain background of data mining / machine learning. Brief introduction to the history, current development, and future.

2. Data Mining Procedure

Demonstrate the steps of data mining, including problem definition, data preparation and cleaning, model execution and result interpretation. Show examples in python.

3. Data Mining Algorithms

Algorithms to be covered include clustering (K-means and nearest neighbor), linear regression, logistic regression, decision trees, tree ensembles (random forest, boosting), and neural networks. Understand the fundamental problem of bias-variance trade-off and the importance of cross-validation in machine learning.

4. Case Studies

Applications on real data.

5. Data Mining Software

Python.

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

Müller, Andreas C., and Sarah Guido. Introduction to machine learning with Python: a guide for data scientists. "O'Reilly Media, Inc.", 2016.

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

1.	Han, Jiawei, Kamber, Micheline and Pei, Jian. Data Mining: Concepts and Techniques
	3 rd edition. Elsevier, 2011.
	This is a great overview book of data mining, from basic concept, data cleaning to
	algorithms and database. It covers many problems you might face in the real world.
2.	An Introduction to Statistical Learning with Applications in R, Gareth James, Daniela
	Witten, Trevor Hastie and Robert Tibshirani.

	This book provides a great introduction to machine learning algorithms. Concepts are well explained without too much technical details.
3.	AIQ: How People and Machines Are Smarter Together. Nicholas Polson, James Scott.
	St. Martin's Press 2018.
	This book contains many interesting stories about how machine learning and data
	mining influence the business world. It is not a technical book.
4.	Introduction to Data Mining, Tan P N, Steinbach M, Kumar V. Pearson Education. 2016
	This is another great book about data mining. It focuses more on algorithms.