City University of Hong Kong Course Syllabus

offered by Department of Management Sciences with effect from Semester A 2022/23

Part I Course Over	view
Course Title:	Statistical Modelling in Economics and Finance
Course Code:	MS6601
Course Duration:	One Semester
Credit Units:	3
Level:	_P6
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites: (Course Code and Title)	MS5218 Applied Linear Statistical Models
Precursors: (Course Code and Title)	Nil
Equivalent Courses : (Course Code and Title)	MS6217 Statistical Modelling in Economics and Finance
Exclusive Courses: (Course Code and Title)	Nil

1

Part II Course Details

1. Abstract

The goal of the class is to introduce financial econometrics: the intersection of statistics and asset pricing. We will cover a wide range of topics, including linear and nonlinear time series, volatility modeling, multivariate time series, and factor models. Particularly, we will discuss how factor-based investing and machine learning are employed in the investment industry. The prerequisites include one course in probability and statistics, one course in regression analysis, and basic knowledge in time series models. Students are expected to work at least 5 hours after every lecture.

2. Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs	Weighting (if	curricu	ery-enr	lated
		applicable)		g outco	
				tick	wnere
			approp		
			AI	A2	A3
1.	Basic Programming Concepts in R	20%	✓	✓	
2.	Knowledges in Financial Econometrics	50%		√	√
3.	Knowledges in Factor Asset Pricing	30%		√	√
		100%			

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs)

(TLAs designed to facilitate students' achievement of the CILOs.)

TLA	Brief Description	CILO No.				Hours/week		
		1	2	3				(if
								applicable)
Classroom	Regular lecture and	1	/	1				
Lectures	demonstration.	_	•	•				
Computer Lab	Students practice R	1	/					
Tutorials	programming	_	•					
Group	Coding together in a team.	./	./	./				
Assignment		•	•	•				

4. Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

Assessment	CILO No.				Weighting	Remarks			
Tasks/Activities	1	2	3						
Continuous Assessment:1	Continuous Assessment: 100 %								
Assignments	✓	✓	✓					40%	
In-Class Midterm Test		✓	✓					30%	
Project	✓	✓	✓					30%	
Examination: _0_% (duration: , if applicable)									

100%

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Applicable to students admitted in Semester A 2022/23 and thereafter

Assessment Task	Criterion	Excellent	Good	Marginal	Failure
		(A+, A, A-)	(B+, B)	(B-, C+, C)	(F)
Assignments	Assessing students'	High	Significant	Moderate	Inadequate
	understanding of core concepts				
	and use of appropriate				
	statistical methods.				
In-Class Midterm Test	Assessing students' ability in	High	Significant	Moderate	Inadequate
	core concepts and problem				
	solving using statistical models				
Project	Assessing students' ability to	High	Significant	Moderate	Inadequate
	code and solve problems with				
	appropriate statistical models				

Applicable to students admitted before Semester A 2022/23

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
Assignments	Core concepts and ideas; use of appropriate statistical methods	High	Significant	Moderate	Basic	Not even reaching marginal levels
In-Class Midterm Test	Core concepts and ideas; use of appropriate statistical methods	High	Significant	Moderate	Basic	Not even reaching marginal levels
Project	Ability in using the appropriate statistical methods to solve the business problem	High	Significant	Moderate	Basic	Not even reaching marginal levels

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

(An indication of the key topics of the course.)

1. Introduction

- Linear Time Series
- Nonlinear Time Series
- Introduction to R

2. Volatility Modeling

- ARCH and GARCH
- More Volatility Models
- Joint Estimation for Expected Return and Volatility

3. Multivariate Time Series

- Vector Autoregression
- Random Walk and Unit Root Test
- Cointegration and Paris Trading

4. Factor Models

- Risk Anomalies
- Time Series Regression
- Cross-Sectional Regression
- Capital Asset Pricing Model
- Fama-French Factor Models

5. Factor-based Investing

- Evaluation of Factor Models
- Factor-based Portfolio Optimization

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

An Introduction to Analysis of Financial Data with R by Ruey S. Tsay, John Wiley 2012.

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

1.	Analysis of Financial Time Series by Tsay, RS, John Wiley 2010.				
2.	Ang, A. Asset management: A systematic approach to factor investing. Oxford University				
	Press, 2014.				
3.	Carmona, R. Statistical analysis of financial data in R. Vol. 2. New York: Springer, 2014.				