offered by Department of Mathematics with effect from Semester A 2022/23

Part I Course Overview

Course Title:	Introduction to Kinetic Theory
Course Code:	MA8024
Course Duration:	One semester
Credit Units:	3
Level:	R8
Medium of Instruction:	English
Medium of	
Assessment:	English
Prerequisites:	
(Course Code and Title)	Nil
Precursors:	
(Course Code and Title)	Nil
Equivalent Courses:	
(Course Code and Title)	Nil
Exclusive Courses:	
(Course Code and Title)	Nil

Part II **Course Details**

1. Abstract

The aim of this course is to introduce the basic concepts of kinetic theory based on the mathematical study on the Boltzmann equation. It is expected to explore the cutting-edge development of mathematical theories in this area that leads to a variety of applications in science and engineering.

2. **Course Intended Learning Outcomes (CILOs)**

No.	CILOs [#]	Weighting*		very-en	
		(if	curricu	lum rel	lated
		applicable)	learnin	g outco	omes
			(please	e tick	where
			approp	riate)	
			A1	A2	A3
1.	Derivation of the Boltzmann equation and related models	20%	\checkmark		
2.	Develop a solid and systematic understanding of the	30%	\checkmark	\checkmark	
	classical properties				
3.	Explore the cutting-edge development in existence theories	30%	\checkmark	\checkmark	
4.	Study some kinetic models in physical settings	10%		\checkmark	\checkmark
5.	Explore possible research topics	10%	\checkmark	\checkmark	\checkmark
		100%			

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: **Accomplishments** Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. **Teaching and Learning Activities (TLAs)**

TLA	Brief Description		O No.		Hours/week		
			2	3	4	5	(if applicable)
Lectures	Learning through teaching is primarily based on lectures	~	~	~	~	V	3 hrs/wk
Assignment	Learning through take-home assignments helps students understand basic mathematical concepts and fundamental theory of linear algebra, and develop the ability of proving mathematical statements rigorously.		✓		✓	V	After-class
Final project	Learning through final projects helps students explore cutting- edge development of the current research in statistical machine learning.	V	V	✓	~	V	After-class

4. Assessment Tasks/Activities (ATs)

Assessment Tasks/Activities		LO N				Weighting*	Remarks
	1	2	3	4	5		
Continuous Assessment: 60%							
Hand-in assignments		~		V	~	30%	These are skills based assessment to enable students to demonstrate the basic concepts and fundamental theory of statistical machine learning.
Final project presentation	✓	✓	✓	✓	✓	30%	Final project presentation provides students chances to demonstrate their exploration and understanding of the cutting-edge development of the current research in statistical machine learning
Examination: <u>40</u> % (duration: 2 hours, if applicable)	V	V	~	~	Ý	40%	Examination questions are designed to see how far students have achieved their intended learning outcomes. Questions will primarily be skills and understanding based to assess the student's versatility in statistical machine learning.
	1					100%	Ŭ

5. Assessment Rubrics

Applicable to students admitted in Semester A 2022/23 and thereafter

Assessment Task	Criterion	Excellent	Good	Marginal	Failure
		(A+, A, A-)	(B+, B)	(B-,C+,C)	(F)
1. Hand-in	DEMONSTRATION	High	Significant	Basic	Not even reaching
Assignments	of the understanding	-	-		marginal levels
	of the basic materials				
2. Final project	DEMONSTRATION	High	Significant	Basic	Not even reaching
presentation	of the exploration and				marginal levels
	understanding of the				
	modern research				
3. Examination	DEMONSTRATION	High	Significant	Basic	Not even reaching
	of skills and	-	-		marginal levels
	versatility in				-
	statistical machine				
	learning				

Applicable to students admitted before Semester A 2022/23

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
1. Hand-in	DEMONSTRATION	High	Significant	Moderate	Basic	Not even reaching
Assignments	of the understanding		C C			marginal levels
-	of the basic materials					
2. Final project	DEMONSTRATION	High	Significant	Moderate	Basic	Not even reaching
presentation	of the exploration and					marginal levels
_	understanding of the					
	modern research					
3. Examination	DEMONSTRATION	High	Significant	Moderate	Basic	Not even reaching
	of skills and					marginal levels
	versatility in					C .
	statistical machine					
	learning					

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

Boltzmann equation, molecule chaos, collision invariants, entropy, cross-sections, Maxwellian, macromicro decomposition, well-posedness theories, boundary conditions, large time behaviour, regularity analysis.

2. Reading List

2.1 Compulsory Readings

Mathematical theory of Boltzmann equation, Lecture Notes Series, No. 8, Liu Bie Ju Centre for Mathematical Sciences, City University of Hong Kong, by Seiji Ukai and Tong Yang

2.2 Additional Readings

The mathematical theory of dilute gases, Applied Mathematical Sciences, 106, Springer-Verlag, New York, 1994, by C. Cercignani, R. Illner and M. Pulvirenti.