offered by Department of Mathematics with effect from Semester A 2022/23

Part I Course Overview

Course Title:	Convex Optimization
Course Code:	MA8022
Course Duration:	One semester
Credit Units:	3
Creat Onits.	5
Tl	no
Level:	<u>R8</u>
Medium of	
Instruction:	English
Medium of	
Assessment:	English
Prerequisites:	
(Course Code and Title)	Nil
Precursors:	
(Course Code and Title)	Nil
Equivalent Courses: (Course Code and Title)	Nil
Course Coue unu 1111e)	
Exclusive Courses:	
(Course Code and Title)	Nil

Part II Course Details

1. Abstract

This course aims to introduce students to the field of modern convex optimization, which generalizes leastsquares, linear and quadratic programming, and semidefinite programming, and forms the basis of many methods for non-convex optimization. Students will learn to recognize and solve convex optimization problems that arise in applications, gain insight in algorithm analysis and design, and obtain a solid understanding of the theoretical foundations of the subject.

2. Course Intended Learning Outcomes (CILOs)

No.	CILOs [#]	Weighting*	Discov	•	
		(if	curricu	lum re	lated
		applicable)	learnin	ig outco	omes
			(please	e tick	where
			approp	riate)	
			A1	A2	A3
1.	Understand the theoretical foundations of convex	30%	\checkmark		
	optimization				
2.	Develop familiarity with a range of algorithms for solving	30%	\checkmark	\checkmark	
	linear, quadratic, and semidefinite programming including				
	its applicability and performance				
3.	Recognize and formulate convex optimization problems as	20%	\checkmark	\checkmark	\checkmark
	they arise in practise				
4.	Implement a number of popular convex optimization	10%		\checkmark	\checkmark
	algorithms				
5.	Use the software Julia to model and solve convex	10%	\checkmark	\checkmark	\checkmark
	optimization problems				
		100%			

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs)

TLA	Brief Description	CILO No.			Hours/week			
		1	2	3	4	5		(if applicable)
Lectures	Learning through teaching is primarily based on lectures, including software presentations.	~	~	~	~	~		3 hrs/wk
Assignments	Learning through take-home assignments helps students understand the mathematical concepts in convex optimization, as well as modelling and solving	✓	✓	✓	✓	~	~	After-class

concrete problems arising in				
applications of convex				
optimization.				

4. Assessment Tasks/Activities (ATs)

Weighting*	hting* Remarks	
	-	
30%	cover both theoretical and practical aspects of convex optimization; programming assignments will enable students to solve practical problems through thei own implementations and through the use of available software	of
20%	primarily cover theoretical aspects of convex optimization and modelling aspects	s
100%	are designed to see how far the students have achieved the intended learning outcomes. Questions will primarily cover theoretical and modelling aspects.	
10)(modelling aspects.

5. Assessment Rubrics

Applicable to students admitted in Semester A 2022/23 and thereafter

Assessment Task	Criterion	Excellent (A+, A, A-)	Good (B+, B)	Marginal (B-,C+,C)	Failure (F)
1. Hand-in	DEMONSTRATION	High	Significant	Basic	Not even reaching
assignments	of the understanding		C C		marginal levels
-	of the basic materials				
	as well as the ability				
	to implement basic				
	algorithms and use				
	implementations of				
	more advanced				
	algorithms in convex				
	optimization				
2. Mid-term test	DEMONSTRATION	High	Significant	Basic	Not even reaching
	of the understanding				marginal levels
	of the theory of				
	convex optimization				
	and ability to				
	recognize and				
	formulate convex				
	optimization				
	problems				
3. Examination	DEMONSTRATION	High	Significant	Basic	Not even reaching
	of skills and				marginal levels
	versatility in convex				
	optimization				

Applicable to students admitted before Semester A 2022/23

Assessment Task	Criterion	Excellent (A+, A, A-)	Good (B+, B, B-)	Fair (C+, C, C-)	Marginal (D)	Failure (F)
1. Hand-in assignments	DEMONSTRATION of the understanding of the basic materials as well as the ability to implement basic algorithms and use implementations of more advanced algorithms in convex optimization	High	Significant	Moderate	Basic	Not even reaching marginal levels
2. Mid-term test	DEMONSTRATION of the understanding of the theory of convex optimization and ability to recognize and formulate convex optimization problems	High	Significant	Moderate	Basic	Not even reaching marginal levels
3. Examination	DEMONSTRATION of skills and versatility in convex optimization	High	Significant	Moderate	Basic	Not even reaching marginal levels

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

Convex sets, convex functions, convex optimization problems (linear, quadratic, semidefinite, conic), optimality conditions, duality, theorems of alternative, first order (gradient) methods, second order (Newton/interior point) methods, semidefinite relaxations, convex regularization.

2. Reading List

2.1 Compulsory Readings

Convex optimization by Stephen Boyd and Lieven Vandenberghe. Cambridge University Press, Cambridge, 2004.

2.2 Additional Readings

1.	Lectures on modern convex optimization by Aharon Ben-Tal and Arkadi Nemirovski. SIAM,
	2001.
2.	Numerical optimization, 2nd edition, by Jorge Nocedal and Stephen J. Wright. Springer, 2006