offered by Department of Mathematics with effect from Semester A 2022/23

Part I Course Overview

Course Title:	Topics in Applied and Computational Harmonic Analysis
Course Code:	MA8021
Course Duration:	One semester
Credit Units:	3
Level	R8
Medium of	English
msu ucuon.	
Medium of	
Assessment:	English
Prerequisites:	
(Course Code and Title)	Nil
Precursors [.]	
(Course Code and Title)	Nil
Fauivalant Courses:	
(Course Code and Title)	Nil
· · · · · · · · · · · · · · · · · · ·	
Exclusive Courses :	Nil
(Course Coue una Ille)	111

Part II Course Details

1. Abstract

This course aims to help research students developing a solid and systematic training in theory of classical and modern harmonic analysis. It also explores frontier areas in applied and computational harmonic analysis and its applications in high-dimensional data analysis and machine learning.

2. Course Intended Learning Outcomes (CILOs)

No.	CILOs [#]	Weighting*	Discov	very-en	riched
		(if	curricu	lum re	lated
		applicable)	learnin	g outco	omes
			(please	e tick	where
			approp	riate)	
			A1	A2	A3
1.	explain the fundamentals in the theory of harmonic analysis	20%	\checkmark		
2.	develop a solid and systematic understanding of	30%	\checkmark	\checkmark	
	multiresolution analysis and framelets				
3.	explore the cutting-edge development of applied and	30%	\checkmark	\checkmark	
	computational harmonic analysis				
4.	implement a number of stat-of-the-art fast framelet	10%		\checkmark	\checkmark
	transforms				
5.	apply harmonic analysis technique to a variety of high-	10%	\checkmark	\checkmark	\checkmark
	dimensional data applications				
		100%			

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs)

TLA	Brief Description	CIL	CILO No.			Hours/week		
	<u> </u>	1	2	3	4	5		(if applicable)
Lectures	Learning through teaching is	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		3 hrs/wk
	primarily based on lectures							
Assignments	Learning through take-home		\checkmark		\checkmark	\checkmark		After-class
	assignments helps students							
	understand basic mathematical							
	concepts and fundamental theory							
	of linear algebra, and develop the							
	ability of proving mathematical							
	statements rigorously.							
Final project	Learning through final projects	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		After-class
	helps students explore cutting-							
	edge development of the current							
	research in applied harmonic							
	analysis							

4. Assessment Tasks/Activities (ATs)

Assessment Tasks/Activities	CILO No.					Weighting*	Remarks	
		1 2 3 4 5						
Continuous Assessment: 70%								
Hand-in assignments		✓		V	~	30%	These are skills based assessment to enable students to demonstrate the basic concepts and fundamental theory of statistical machine learning.	
Final project presentation	✓	✓	✓	✓	~	40%	Final project presentation provides students chances to demonstrate their exploration and understanding of the cutting-edge development of the current research in statistical machine learning	
Examination: <u>30</u> % (duration: 2 hours)	V	V	~	~		30%	Examination questions are designed to see how far students have achieved their intended learning outcomes. Questions will primarily be skills and understanding based to assess the student's versatility in statistical machine learning.	
	-	•	•	-		100%	~~~	

5. Assessment Rubrics

Applicable to students admitted in Semester A 2022/23 and thereafter

Assessment Task	Criterion	Excellent	Good	Marginal	Failure
		(A+, A, A-)	(B+, B)	(B-,C+,C)	(F)
1. Hand-in assignments	DEMONSTRATION of the understanding of the basic materials	High	Significant	Basic	Not even reaching marginal levels
2. Final project presentation	DEMONSTRATION of the exploration and understanding of the modern research	High	Significant	Basic	Not even reaching marginal levels
3. Examination	DEMONSTRATION of skills and versatility in applied harmonic analysis	High	Significant	Basic	Not even reaching marginal levels

Applicable to students admitted before Semester A 2022/23

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
1. Hand-in	DEMONSTRATION	High	Significant	Moderate	Basic	Not even reaching
assignments	of the understanding					marginal levels
	of the basic materials					
2. Final project	DEMONSTRATION	High	Significant	Moderate	Basic	Not even reaching
presentation	of the exploration and					marginal levels
	understanding of the					
	modern research					
3. Examination	DEMONSTRATION	High	Significant	Moderate	Basic	Not even reaching
	of skills and					marginal levels
	versatility in applied					
	harmonic analysis					

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

Fourier Transform and Distributions; Function Spaces and Atomic Decomposition; Multiresolution Analysis and Framelets; Framelets on Manifolds and Graphs; Harmonic Analysis in Machine Learning.

2. Reading List

2.1 Compulsory Readings

1.	Modern Fourier Analysis, 2 nd Edition, Loukas Grafakos, Springer 2009
2.	Ten Lectures on Wavelets, Ingrid Daubechies, SIAM 1992

2.2 Additional Readings

Harmonic Analysis, Elias M. Stein, Princeton University Press, 1993