offered by Department of Mathematics with effect from Semester A 2022/23

Part I Course Overview

Course Title:	Selected Topics in PDEs
Course Code:	MA8020
Course Duration:	One semester
Credit Units:	_3
Level:	
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites : (Course Code and Title)	Nil
Precursors : <i>(Course Code and Title)</i>	Nil
Equivalent Courses : <i>(Course Code and Title)</i>	Nil
Exclusive Courses: (Course Code and Title)	Nil

Part II Course Details

1. Abstract

This course aims to provide an introduction to mathematical theories of PDE models from fluid mechanics ranging from elementary introductory material to current research topics. Some topics in both incompressible and compressible models will be covered. This course will help students have a direct view of systematic understanding of research difficulties, tools, and frontiers.

2. Course Intended Learning Outcomes (CILOs)

No.	CILOs#	Weighting*	Discov	very-eni	riched
		(if	curricu	ılum rel	lated
		applicable)	learnin	ig outco	omes
			(please	e tick	where
			approp	riate)	
			A1	A2	A3
1.	Explain the fundamental background and property of	30%	\checkmark	\checkmark	\checkmark
	models from fluid mechanics.				
2.	Explore a systematic understanding of the classical analytic	40%	\checkmark	\checkmark	
	techniques for PDEs from fluid mechanics.				
3.	Knowledge of the current research techniques and	20%	\checkmark	\checkmark	
	difficulties for PDEs from fluid mechanics				
4	Knowledge of literature search	10%	\checkmark	\checkmark	\checkmark
		100%			

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

- A2: Ability Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.
- A3: Accomplishments Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs)

TLA	TLA Brief Description		CILO No.				Hours/week
		1	2	3	4		(if applicable)
Lectures	Learning through teaching is primarily based on lectures	\checkmark	~	~	~		3 hrs/wk
Presentation	Learning through course presentations helps students explore state-of-the-art research frontiers in PDEs from fluid mechanics		✓	V	V		3 hrs/wk for 2 weeks

4. Assessment Tasks/Activities (ATs)

Assessment Tasks/Activities	CILO No.					Weighting* Remarks
	1	2	3	4		
Continuous Assessment: 60%						
Course presentation	\checkmark	\checkmark	\checkmark	\checkmark		60%
Examination: 40% (duration:	\checkmark	\checkmark	\checkmark			40%
2 hours)						
	100%					

5. Assessment Rubrics

Applicable to students admitted in Semester A 2022/23 and thereafter

Assessment Task	Criterion	Excellent	Good	Marginal	Failure
		(A+, A, A-)	(B+, B)	(B-,C+,C)	(F)
1. Course	Demonstration of the	High	Significant	Basic	Not even reaching
presentation	understanding of the				marginal levels
	modern research				
2. Examination	Demonstration of	High	Significant	Basic	Not even reaching
	skills and versatility				marginal levels
	in PDEs from fluid				
	mechanics				

Applicable to students admitted before Semester A 2022/23

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
1. Course presentation	Demonstration of the understanding of the modern research	High	Significant	Moderate	Basic	Not even reaching marginal levels
2. Examination	Demonstration of skills and versatility in PDEs from fluid mechanics	High	Significant	Moderate	Basic	Not even reaching marginal levels

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

Vorticity, Energy Method, Galerkin Method, Particle-Trajectory Method, Leray Weak Solution, Regularity.

2. Reading List

2.1 Compulsory Readings

A. Majda, A. Bertozzi: Vorticity and incompressible flow. Cambridge Texts in Applied Mathematics, 27. Cambridge University Press, Cambridge, 2002.

2.2 Additional Readings