offered by Department of Mathematics with effect from Semester A 2022/23

Part I Course Overview

Course Title:	Continuum Mechanics							
Course Code:	MA8017							
Course Duration:	One Semester							
Credit Units:	3							
Level:	R8							
Medium of								
Instruction:	English							
Medium of Assessment:	English							
Prerequisites:								
(Course Code and Title)	Nil							
Precursors:								
(Course Code and Title)	Nil							
Equivalent Courses : <i>(Course Code and Title)</i>	Nil							
	_ 1 1 A A							
Exclusive Courses : (Course Code and Title)	Nil							

Part II Course Details

1. Abstract

This course aims to

- present the mathematical theory and applications of continuum media;
- provide a mathematical foundation for further studies in mechanics, material sciences and other branches of science and engineering.

2. Course Intended Learning Outcomes (CILOs)

No.	CILOs [#]	Weighting*	Discov	very-en	riched
		(if	curricu	lum rel	lated
		applicable)	learnin	g outco	omes
			(please	e tick	where
			approp	riate)	
			A1	A2	A3
1.	Introduce tensor and its algebra	10%	\checkmark	\checkmark	
2.	Describe basic kinematics of continuum bodies	20%	\checkmark	\checkmark	
3.	Describe the general stress-strain for elastica and the				
	restrictions imposed by frame indifference and material	20%	\checkmark	\checkmark	
	symmetry				
4.	Derive (Einstein) field equations in conjunction with their	30%		\checkmark	\checkmark
	relevance as a tensor equation and in Newtonian mechanics	5070			
5.	Solve certain problems in nonlinear elasticity; describe the				
	continuum theory for a linearly viscous fluid and solutions	20%	\checkmark	\checkmark	\checkmark
	of the associated Navier-Stokes equations				
		100%			

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs)

TLA	Brief Description	CI	LON	lo.		Hours/week (if	
		1	2	3	4	5	applicable)
Lectures	Learning through teaching is primarily based on lectures	~	~	\checkmark	~	~	3 hours/week
Assignments	Learning through take-home assignments helps students implement mathematical theory and techniques in analysing structures of isotropic elastic solids and modelling Newtonian fluids	~	~	\checkmark	\checkmark	~	After-class

4. Assessment Tasks/Activities (ATs)

Assessment	ssessment CILO No.				Weighting*	Remarks	
Tasks/Activities	1	2	3	4	5		
Continuous Assessm	nent	: <u>30</u> %	6				
Test	~	~	~			15-30%	Questions are designed for the first part of the course to see how well students have applied field equations in Newtonian mechanics and formulated problems of isotropic elastic mathematically.
Hand-in assignments	~	~	~	~	~	0-15%	These are skills based assessment to help students manipulate mathematical theory and techniques to analyse structures of isotropic elastic solids and model Newtonian fluid.
Examination: <u>70</u> % (duration: 3 hours)	✓	~	✓	✓	~	70%	Examination questions are designed to see how far students have achieved their intended learning outcomes. Questions will primarily be skills and understanding based to assess the student's versatility in mathematical formulation of continuum mechanics.
						100%	

5. Assessment Rubrics

Applicable to students admitted in Semester A 2022/23 and thereafter

Assessment Task	Criterion	Excellent	Good	Marginal	Failure
		(A+, A, A-)	(B+, B)	(B-,C+,C)	(F)
1. Test	DEMONSTRATION	High	Significant	Basic	Not even reaching
	of the understanding	-	-		marginal levels
	of the first part of the				
	course				
2. Hand-in	DEMONSTRATION	High	Significant	Basic	Not even reaching
assignments	of the understanding				marginal levels
-	of the basic materials				_
3. Examination	DEMONSTRATION	High	Significant	Basic	Not even reaching
	of skills and	-	-		marginal levels
	versatility in				-
	continuum mechanics				

Applicable to students admitted before Semester A 2022/23

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
1. Test	DEMONSTRATION of the understanding of the first part of the course	(A+, A, A-) High	(B+, B, B-) Significant	(C+, C, C-) Moderate	(D) Basic	(F) Not even reaching marginal levels
2. Hand-in assignments	DEMONSTRATION of the understanding of the basic materials	High	Significant	Moderate	Basic	Not even reaching marginal levels
3. Examination	DEMONSTRATION of skills and versatility in continuum mechanics	High	Significant	Moderate	Basic	Not even reaching marginal levels

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

Tensors, stress and deformation, derivation of field equations, linear isotropic elastic solids, nonlinear isotropic elastic solids, Newton fluid.

2. Reading List

2.1 Compulsory Readings

1.	Continuum Mechanics, P. Chadwick, Dover: New York, 1999.
2.	
3.	

2.2 Additional Readings

1.	
2.	
3.	