offered by Department of Mathematics with effect from Semester A 2022/23

Part I Course Overview

Course Title:	Advanced Learning Theory							
Course Code:	MA8015							
Course Duration:	One Semester							
Credit Units:	3							
Level:								
Medium of								
Instruction:	English							
Medium of								
Assessment:	English							
Prerequisites:								
(Course Code and Title)	Nil							
Precursors:								
(Course Code and Title)	Nil							
Equivalent Courses:								
(Course Code and Title)	Nil							
Exclusive Courses:								
(Course Code and Title)	Nil							

Part II Course Details

1. Abstract

This course aims to introduce mathematical models, important algorithms and advanced analysis techniques for learning theory, and discuss advanced topics of current research interest.

2. Course Intended Learning Outcomes (CILOs)

No.	CILOs [#]	Weighting*	Discov	very-eni	riched	
		(if	curricu	lum rel	lated	
		applicable)	learnin	g outco	omes	
			(please	tick	where	
			approp	appropriate)		
			A1	A2	A3	
1.	Formulate the problem of estimation under uncertainty in a					
	normal linear space and use techniques of convex analysis	30%	\checkmark	\checkmark		
	to identify worst case optimal estimators					
2.	Elucidate the role of regularization when there are two					
	competing error criterion represent and establish optimality	20%		\checkmark	\checkmark	
	of regularization in a Hilbert space setting					
3.	Explain basic mathematical models in machine learning	20%	\checkmark	\checkmark		
4.	Describe the concept of reproducing kernel Hilbert spaces					
	and their use in both single and multitask machine learning	30%		\checkmark	\checkmark	
	problems					
		100%				

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

3. Teaching and Learning Activities (TLAs)

TLA	Brief Description	CI	LON	No.		Hours/week (if
		1	2	3	4	applicable)
Lectures	Learning through teaching is primarily based on	\checkmark	\checkmark	\checkmark	\checkmark	3 hours/week
	lectures					
Assignments	Learning through take-home assignments helps	\checkmark	\checkmark	\checkmark	\checkmark	After-class
	students implement mathematical theory and					
	techniques of learning theory, as well as					
	applications of which in approximation and					
	classification problems					

A3: Accomplishments Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

4. Assessment Tasks/Activities (ATs)

Assessment	CILO No.		Weighting*	Remarks		
Tasks/Activities	1	2	3	4		
Continuous Assessm	nent:	<u>40</u> %	,)			
Test	~	~	~		15-40%	Questions are designed for the first part of the course to see how well the students have formulated mathematical models of learning theory and manipulated related analytic concepts (e.g. reproducing kernel Hilbert spaces).
Hand-in assignments	~	~	~	~	0-15%	These are skills based assessment to help students manipulate theory and techniques of learning theory, as well as its applications in approximation and classification problems.
Examination: <u>60</u> % (duration: 3 hours)	~	~	~	~	60%	Examination questions are designed to see how far students have achieved their intended learning outcomes. Questions will primarily be skills and understanding based to assess the student's versatility in theory and techniques of learning models.
					100%	

5. Assessment Rubrics

Applicable to students admitted in Semester A 2022/23 and thereafter

Assessment Task	Criterion	Excellent	Good	Marginal	Failure
		(A+, A, A-)	(B+, B)	(B-,C+,C)	(F)
1. Test	DEMOSTRATION	High	Significant	Basic	Not even reaching
	of the understanding				marginal levels
	of the first part of the				
	course				
2. Hand-in	DEMONSTRATION	High	Significant	Basic	Not even reaching
assignments	of the understanding				marginal levels
	of the basic materials				
3. Examination	DEMONSTRATION	High	Significant	Basic	Not even reaching
	of skills and				marginal levels
	versatility in learning				
	models				

Applicable to students admitted before Semester A 2022/23

Assessment Task	Criterion	Excellent (A+, A, A-)	Good (B+, B, B-)	Fair (C+, C, C-)	Marginal (D)	Failure (F)
1. Test	DEMOSTRATION of the understanding of the first part of the course	High	Significant	Moderate	Basic	Not even reaching marginal levels
2. Hand-in assignments	DEMONSTRATION of the understanding of the basic materials	High	Significant	Moderate	Basic	Not even reaching marginal levels
3. Examination	DEMONSTRATION of skills and versatility in learning models	High	Significant	Moderate	Basic	Not even reaching marginal levels

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

Basic models for machine learning, reproducing kernel Hilbert spaces, regularization schemes, convex analysis, optimal estimation.

2. Reading List

2.1 Compulsory Readings

1.	
2.	
3.	

2.2 Additional Readings

1.	
2.	
3.	