Course Syllabus

offered by Department of Mathematics with effect from Semester A 2022/23

Part I Course Overview

Course Title:	Advanced Partial Differential Equations II							
Course Code:	MA8007							
Course Duration:	One Semester							
Course Duration:	One Semester							
Credit Units:	3							
Level:	<u></u>							
Medium of Instruction:	English							
mon uction.								
Medium of								
Assessment:	English							
Prerequisites:	MA8005 Advanced Partial Differential Equations I							
(Course Code and Title)	MA8006 Functional Analysis and Applications							
Precursors:								
(Course Code and Title)	Nil							
Fourivalant Comment								
Equivalent Courses : (Course Code and Title)	Nil							
(Course Coue unu rule)								
Exclusive Courses:								
(Course Code and Title)	Nil							

Part II Course Details

1. Abstract

This course aims to give research students a solid training in the advanced theory of linear and nonlinear partial differential equations, such as variational and nonvariational techniques, weak solutions, etc..

2. Course Intended Learning Outcomes (CILOs)

No.	CILOs [#]	Weighting* (if		very-eni ilum rel	
		applicable)		ng outco	
		applicable)		e tick	
			A1	A2	A3
1.	Complements of linear and nonlinear functional analysis needed for this course	20%	\checkmark	\checkmark	\checkmark
2.	Describe at high level mathematical theory underlying some linear and nonlinear partial differential equations arising in solid and fluid mechanics	20%	~	~	
3.	Explain clearly fundamental concepts of variational techniques based on linear and nonlinear functional analysis	20%	~	~	~
4.	Demonstrate various techniques for nonlinear partial differential equations that are not necessarily of variational form	20%	~	~	~
5.	Construct approximate solutions of nonlinear partial differential equations and study their convergence	20%		\checkmark	\checkmark
		100%			

A1: Attitude

A2:

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

- Ability Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.
- A3: Accomplishments Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs)

TLA	Brief Description	CI	LON	lo.		Hours/week (if	
		1	2	3	4	5	applicable)
Lectures	Learning through teaching is primarily based	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	3 hours/week
	on lectures						
Assignments	Learning through take-home assignments	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	After class
	helps students implement mathematical						
	principles to understand the theory of partial						
	differential equations.						

4. Assessment Tasks/Activities (ATs)

Assessment	CILO No.		Weighting*	Remarks			
Tasks/Activities	1	2	3	4	5		
Continuous Assess	ment	: <u>30</u> 9	%				
Test	 ✓ 	~	~			0-35%	Questions are designed for the first part of the course to see how well students have learned mathematical formulation of partial differential equations in mathematical physics.
Hand-in assignments	~	~	~	~	~	35-70%	These are skills based assessment to help students implement various methods in problems arising from mathematical physics.
Examination: (duration: 3 hours)	~	~	~	 ✓ 	~	30%	Examination questions are designed to see how far students have achieved their intended learning outcomes. Questions will primarily be skills and understanding based to assess the student's versatility in finding solutions of partial differential equations.
						100%	

5. Assessment Rubrics

Applicable to students admitted in Semester A 2022/23 and thereafter

Assessment Task	Criterion	Excellent	Good	Marginal	Failure
		(A+, A, A-)	(B+, B)	(B-,C+,C)	(F)
1. Test	DEMONSTRATION	High	Significant	Basic	Not even reaching
	of the understanding	-	-		marginal levels
	of the first part of the				
	course				
2. Hand-in	DEMONSTRATION	High	Significant	Basic	Not even reaching
assignments	of the understanding		-		marginal levels
	of the basic materials				_
3. Examination	DEMONSTRATION	High	Significant	Basic	Not even reaching
	of skills and		-		marginal levels
	versatility in finding				_
	solutions of partial				
	differential equations				
	using different				
	methods				

Applicable to students admitted before Semester A 2022/23

Assessment Task	Criterion	Excellent	Good (B+ B B)	Fair	Marginal	Failure
1. Test	DEMONSTRATION of the understanding of the first part of the course	(A+, A, A-) High	(B+, B, B-) Significant	(C+, C, C-) Moderate	(D) Basic	(F) Not even reaching marginal levels
2. Hand-in assignments	DEMONSTRATION of the understanding of the basic materials	High	Significant	Moderate	Basic	Not even reaching marginal levels
3. Examination	DEMONSTRATION of skills and versatility in finding solutions of partial differential equations using different methods	High	Significant	Moderate	Basic	Not even reaching marginal levels

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

Variational techniques: Korn's inequality, inf-sup theorem, existence of minimizers; nonvariational techniques: monotonicity methods, fixed point methods, Brouwer's fixed point theorem.

2. Reading List

2.1 Compulsory Readings

1.	
2.	
3.	

2.2 Additional Readings

1.	P.G. Ciarlet, Linear and Nonlinear Functional Analysis with Applications, SIAM, 2013.
2.	
3.	