Course Syllabus

offered by Department of Mathematics with effect from Semester A 2022/23

Part I Course Overv	view
Course Title:	Selected Topics in Applied Analysis
Course Code:	MA8004
Course Duration:	One semester
Credit Units:	3
Level:	R8
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites: (Course Code and Title)	Nil
Precursors: (Course Code and Title)	Nil
Equivalent Courses : (Course Code and Title)	Nil
Exclusive Courses: (Course Code and Title)	Nil

1

Part II Course Details

1. Abstract

This course aims to introduce research students to three active fields of research about partial differential equations depending on a parameter, which may go either to zero or to plus infinity, namely:

- Asymptotic analysis
- Homogenization
- Penalization

This will be done by studying four fundamental boundary value problems in applied mathematics, which also have numerous real-life applications:

- 1. Stokes equations: existence, uniqueness, and asymptotic analysis in infinite cylinders,
- 2. Elasticity equations: existence, uniqueness, and asymptotic analysis in thin plates,
- 3. Diffusion equation: existence, uniqueness, and homogenization,
- 4. Obstacle problems: existence, uniqueness, and penalization.

The course is self-contained, save for basic theorems about Sobolev spaces.

2. Course Intended Learning Outcomes (CILOs)

No.	CILOs#	Weighting*	Discov	ery-enr	riched
		(if	curricu	ılum rel	lated
		applicable)	learnin	g outco	omes
			(please	tick	where
			approp	riate)	
			A1	A2	<i>A3</i>
1.	Define weak, strong, and classical solutions for any boundary value problem made of partial differential	10%	√	✓	
	equations and boundary conditions	- 0,1			
2.	Prove existence, uniqueness and stability of weak solutions	100/	,		
	to boundary value problems of elliptic type, by using	10%	√	√	
	Riesz/Lax Milgram theorem				
3.	Find the limit of the weak solution to a boundary value	•			
	problem depending on a parameter, by using the "corrector	20%		·	V
1	method" taught in Chapter 1 of this course				
4.	Find the limit of the solution of a boundary value problem	20%		./	./
	depending on a parameter by using the "scaling method" taught in Chapter 2	20%		ľ	V
5.	Find the homogenized problem corresponding to a PDE		,	,	
	with highly oscillating coefficients by using the technique	20%	✓	✓	✓
	taught in Chapter 3				
6.	Compute the solution of a constrained problem by using	20%	✓	✓	✓
	the penalization method taught in Chapter 4				
		100%			

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines

or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs)

TLA	Brief Description	CII	LON	Vo.		Hours/week		
		1	2	3	4	5	6	(if applicable)
Lectures	Learning through teaching is primarily	✓	✓	✓	✓	✓	✓	3 hours/week
	based on lectures							
Assignments	Learning though take-home assignments	✓	✓	✓	✓	✓	✓	After class
	helps students understand how to apply							
	the techniques learned in this course to							
	other boundary value problems modeling							
	physical phenomena							

4. Assessment Tasks/Activities (ATs)

Assessment	CILO No.				Weighting*	Remarks		
Tasks/Activities	1	2	3	4	5	6		
Continuous Assessment: <u>50</u> %								
Test	√	✓	✓	✓			25%	Questions are designed for the first part of the course to see how well students have learned to prove existence, uniqueness, and stability of weak solutions to a boundary value problem of elliptic type.
Hand-in assignments	√	√	✓	√	√	√	25%	These are skills based assessment to help students learn how to apply the techniques learned in this course to various mathematical problems modeling physical phenomena.
Examination: 50% (duration: 3 hours)	√	✓	✓	✓	✓	√	50%	Examination questions are designed to see how far students have achieved their intended learning outcome. Questions will primarily be skills and understanding based to assess the student's versatility in techniques used to tackle boundary values problems depending on a parameter.
			•	•		•	100%	

5. Assessment Rubrics

Applicable to students admitted in Semester A 2022/23 and thereafter

Assessment Task	Criterion	Excellent	Good	Marginal	Failure
		(A+, A, A-)	(B+, B)	(B-,C+,C)	(F)
1. Test	Demonstration of the	High	Significant	Basic	Not even reaching
	understanding of the				marginal levels
	first part of the course				
2. Hand in	Demonstration of the	High	Significant	Basic	Not even reaching
assignments	understanding of the				marginal levels
	basic techniques				
	taught in this course				
3. Examination	Demonstration of the	High	Significant	Basic	Not even reaching
	skills and versatility				marginal levels
	in applied analysis				

Applicable to students admitted before Semester A 2022/23

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
1. Test	Demonstration of the	High	Significant	Moderate	Basic	Not even reaching
	understanding of the					marginal levels
	first part of the course					
2. Hand in	Demonstration of the	High	Significant	Moderate	Basic	Not even reaching
assignments	understanding of the					marginal levels
	basic techniques					
	taught in this course					
3. Examination	Demonstration of the	High	Significant	Moderate	Basic	Not even reaching
	skills and versatility					marginal levels
	in applied analysis					

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

Asymptotic analysis, Homogenization, Penalization; weak solutions to partial differential equations, Riesz theorem and its generalization by Lax-Milgram, scaling, a priori estimates; Stokes equations, Elasticity equations, Diffusion problem, Obstacle problem.

2. Reading List

2.1 Compulsory Readings

1.	
2.	
3.	

2.2 Additional Readings

1.	Michel M. CHIPOT: Asymptotic Issues for some Partial Differential Equations. Imperial College Press, 2016.
2.	Philippe G. CIARLET: Mathematical Elasticity, Vol. II: Theory of Plates. North-Holland, 1997.
3.	Doina CIORANESCU, Alain DAMLAMIAN, Georges GRISO: The Periodic Unfolding Method. Theory and Applications to Partial Differential Problems. Springer, 2018.
4.	David KINDERLEHRER, Guido STAMPACCHIA: An Introduction to Variational Inequalities and Their Applications. SIAM, 2000.