City University of Hong Kong Course Syllabus

offered by College/School/Department of $\underline{}$ Mathematics with effect from Semester A 2022 / 23

Part I Course Over	view
Course Title:	Applied Partial Differential Equations
Course Code:	MA5601
Course Duration:	One Semester
Credit Units:	3
Level:	P5
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites: (Course Code and Title)	Nil
Precursors: (Course Code and Title)	Nil
Equivalent Courses : (Course Code and Title)	Nil
Exclusive Courses: (Course Code and Title)	Nil

1

Part II Course Details

1. Abstract

This course aims to introduce more advanced topics of partial differential equations with an emphasis on their mathematical theory and applications.

2. Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs	Weighting (if applicable)	curricu learnin	very-emulum relag outco e tick priate)	lated omes where
1	and in alcohometh and in all formulation of stations are and	200/	Al	A2	A3
1.	explain clearly mathematical formulation of stationary and time-dependent boundary value problems arising in physical problems.	20%	v		
2.	describe analytic and structural properties of Green's functions.	20%	√	√	
3.	find Green's functions for boundary value problems by various methods including the use of Dirac-delta functions.	20%	√	√	
4.	apply Fourier series and integral transform techniques to obtain solutions of appropriate initial/boundary value problems.	20%	√	√	
5.	state and derive the one-dimensional Euler-Lagrange equation.	10%	√	√	✓
6.	obtain minimizers of functionals on analytic function spaces as solutions of classical partial differential equations.	10%	√	√	√
		100%		•	

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

Teaching and Learning Activities (TLAs) (TLAs designed to facilitate students' achievement of the CILOs.)

TLA	Brief Description	CILO No.					Hours/week	
		1	2	3	4	5	6	(if applicable)
Lectures	Learning through teaching is primarily	√	✓	✓	✓	✓	✓	39 hours in total
	based on lectures.							totai
Take-home	Learning through take-home	✓	✓	✓	✓	✓	✓	after-class
Assignments	assignments helps students implement							
	more advanced theory and functional							
	analytic techniques of partial							
	differential equations, with applications							
	in mathematical physics.							

4. Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

40% Coursework

60% Examination (Duration: 3 hours, at the end of the semester)

Assessment Tasks/Activities	CILO No.		Weighting	Remarks			
	1 2 3 4 5 6						
Continuous Assessment: 40%							
Test	v v		· •			20-40%	Questions are designed for the first part of the course to see how well students have learned classical results in the theory of stationary and time-dependent boundary value problems as well as integral transform techniques in solving these problems.
Hand-in assignments	V		\ \ \	\	>	020%	These are skills based assessment to help students manipulate advanced theory and functional analytic techniques of partial differential equations, and their applications in mathematical physics.
Examination: 60% (duration: 3 hrs, if applicable)						Examination questions are designed to see how far students have achieved their intended learning outcomes. Questions will primarily be skills and understanding based to assess the student's versatility in advanced theory and techniques underlying solutions of partial differential equations.	
						100%	

100%

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Applicable to students admitted in Semester A 2022/23 and thereafter

Assessment Task	Criterion	Excellent	Good	Marginal	Failure
		(A+, A, A-)	(B+, B)	(B-, C+, C)	(F)
1. Test	Independent problem solving	High	Significant	Basic	Not even reaching
skills on progressive learning					marginal levels
	based on lecture				
2. Hand-in	Understanding based on both	High	Significant	Basic	Not even reaching
assignments	lecture and outsource reference				marginal levels
3. Examination	Comprehensive problem solving	High	Significant	Basic	Not even reaching
skills on learning mate					marginal levels
	throughout the semester				

Applicable to students admitted before Semester A 2022/23

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
1. Test	Independent problem solving skills on progressive learning based on lecture	High	Significant	Moderate	Basic	Not even reaching marginal levels
2. Hand-in assignments	Understanding based on both lecture and outsource reference	High	Significant	Moderate	Basic	Not even reaching marginal levels
3. Examination	Comprehensive problem solving skills on learning materials throughout the semester	High	Significant	Moderate	Basic	Not even reaching marginal levels

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

(An indication of the key topics of the course.)

The fundamental stationary and time-dependent boundary value problems of solid and fluid mechanics. Classical and weak solutions. Green's functions. Solutions by Fourier series and Fourier transforms. Euler-Lagrange equation and minimization of functionals.

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

1.	W. Strauss, 1992, Partial Differential Equations: An Introduction. John Wiley & Sons.
2.	P.Wilmott & S. Howison & J. Dewynne, 1997, The Mathematics of Financial Derivatives.
	A Student Introduction. Cambridge University Press.
3.	

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

1.	
2.	
3.	