City University of Hong Kong Course Syllabus

offered by Department of Biostatistics with effect from Semester B 2023/24

Part I Course Overview

Course Title:	Statistical Inference
Course Code:	BIOS6902
Course Duration:	1 semester
Credit Units:	3 CUs
Level:	P6
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites : (Course Code and Title)	Nil
Precursors : (Course Code and Title)	Nil
Equivalent Courses : <i>(Course Code and Title)</i>	Nil
Exclusive Courses : <i>(Course Code and Title)</i>	Nil

1. Abstract

Recommended background for this course is exposure to an introductory mathematical treatment of the fundamental principles of probability theory (e.g., as covered in BIOS5800), which provide the foundations for statistical inference. After a brief review of these principles, the course covers point estimation, including evaluation of estimators and methods of estimation, interval estimation, and hypothesis testing, including power calculations and likelihood ratio testing.

2. Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs	Weighting (if applicable)	Discov curricu learnin (please approp	lum rel g outec tick	ated omes
			Al	A2	A3
1.	Understand the fundamental techniques of statistical inference	40%	\checkmark	\checkmark	
2.	Ability to develop and fit statistical models for applications involving biomedical and public health data	40%	\checkmark	\checkmark	
3.	Appreciate the need for rigorous statistical inference in science	20%	\checkmark	\checkmark	
		100%			

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3.

Teaching and Learning Activities (TLAs) (*TLAs designed to facilitate students' achievement of the CILOs.*)

TLA	Brief Description	CIL	CILO No.		Hours/week (if
		1	2	3	applicable)
Teaching	Learning through teaching based on lectures	\checkmark	\checkmark	\checkmark	3 hours/ week
Assignments	Learning through assignments allows students to perform critical problem analysis and develop hands-on skills involving statistical inference	V	V	V	

4. Assessment Tasks/Activities (ATs) (ATs are designed to assess how well the students achieve the CILOs.)

Assessment Tasks/Activities		CILO No.		Weighting	Remarks	
	1	2	3			
Continuous Assessment: 60%						
Assignments	\checkmark			30%		
Midterm/quizzes				20%		
Participation				10%		
Examination: 40%						
Examination (duration: 2 hours)	\checkmark			40%		
	•		•	100%		

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Applicable to students admitted in Semester A 2022/23 and thereafter

Assessment Task	Criterion	Excellent (A+, A, A-)	Good (B+, B)	Marginal (B-, C+, C)	Failure (F)
1.	Problem solving skills	Consistently exhibits	Sufficiently applies	Displays basic grasp of	Shows limited
Assignments		adept comprehension of	statistical inference	statistical inference	comprehension of
		statistical inference	concepts to moderately	concepts and their	statistical inference
		principles and their	complex problems	application to	concepts and lacks the
		practical implementation		straightforward problems.	ability to apply them to
					problem-solving
2. Quizzes	Problem solving based	Reliably utilizes	Sufficiently employs	Applies statistical	Incapable or inept at
	on comprehensive	statistical inference	statistical inference	inference concepts and	applying statistical
	understanding	concepts and methods to	concepts and methods to	methods with limited	inference concepts and
		tackle intricate problems.	address moderately	effectiveness to solve	methods to
			complex problems	simple problems	problem-solving
3. Midterm	Problem solving based	Exhibits a thorough grasp	Displays sufficient	Shows basic	Displays limited grasp of
Exam	on comprehensive	of statistical inference	understanding of	comprehension of	statistical inference
	understanding	concepts and effectively	statistical inference	statistical inference	concepts and lacks the
		applies them to intricate	concepts and effectively	concepts and applies	ability to apply them to
		problems	applies them to	them to straightforward	problem-solving
			moderately complex	problems	
			problems		

4. Final Exam	Problem solving based	Consistently exhibits a	Effectively applies	Applies statistical	Lacks understanding of
	on comprehensive	deep understanding of	statistical inference	inference concepts to	statistical inference
	understanding	statistical inference	concepts to moderately	simple problems with a	concepts and cannot
		concepts and effectively	complex problems,	basic understanding	apply them to
		applies them to complex	demonstrating sufficient		problem-solving
		problems	understanding		
5.	Communication skills	Engages actively in class	Participates intermittently	Engages minimally in	Infrequently engages in
Participation		discussions, group work,	or passively in class	class discussions, group	class discussions, group
		and activities	discussions, group work,	work, and activities	work, and activities
			and activities		

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

(An indication of the key topics of the course.)

Point estimation, interval estimation, hypothesis testing, power calculations, likelihood ratio tests.

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

1. Statistical Inference by George Casella and Roger L. Berger (Cengage Learning; 2nd edition)

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

1. All of Statistics: A Concise Course in Statistical Inference (Springer Texts in Statistics) by Larry Wasserman