City University of Hong Kong Course Syllabus

offered by Department of Advanced Design and Systems Engineering with effect from Semester A 2022 / 23

Part I Course Overv	iew
Course Title:	Systems Modeling and Management
Course Code:	ADSE8202
Course Duration:	One semester
Credit Units:	3
Level:	R8
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites:	Nil
Precursors:	Nil
Equivalent Courses:	
Exclusive Courses:	SEEM8202 Systems Modeling and Management (offered until 2021/22) Nil

1

Part II Course Details

1. Abstract

This course includes the introduction of: 1) simulation models and simulation studies; 2) simulation language (Arena); 3) statistical aspects including input analysis, random variate generation, output analysis, and variance reduction techniques; and 4) simulation optimization techniques.

2. Course Intended Learning Outcomes (CILOs)

No.	CILOs	Weighting*	Discov	ery-enr	riched
		(if	curricu	ılum rel	ated
		applicable)		g outco	
			(please	tick	where
			appropriate)		
			AI	A2	A3
1.	Introduce the fundamental concepts and principles in system modelling and simulation.	20%	✓	✓	
2.	Introduce appropriate simulation language for modelling systems	30%		✓	√
3.	Understand basic statistical aspects related to simulation modelling	30%		✓	✓
4.	Apply methodologies for improving the performance of stochastic systems	20%	✓	✓	
		100%			

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs)

TLA	Brief Description		O No).	Hours/week (if		
		1	2	3	4	5	applicable)
Large Class	Learning through teaching is primarily	✓	✓	✓	✓	✓	26 hrs/
Activities	based on lectures. Mini-lectures and						semester
	tutorials will be used to facilitate						
	understanding and applications of various						
	concepts and methods.						
Tutorial	The homework exercises provide students	✓	✓	✓	✓	✓	21 hrs/
Exercises	with the opportunities to familiarize						semester
	themselves with the methods learnt during						
	the lectures.						

4. Assessment Tasks/Activities (ATs)

Assessment Tasks/Activities	CILO No.					Weighting*	Remarks
	1	2	3	4	5		
Continuous Assessment: 40 %							
Assignments	✓	✓	✓	✓	✓	40%	
Students are required to effectively							
apply knowledge and skills learned							
from the course in solving some							
simple practical problems.							
Examination: <u>60</u> % (duration:	2 hrs		, if a	plica	ble)		
<u>Exam</u>	✓	✓	✓	✓	✓	60%	
Students will be assessed via the							
examination their understanding of							
concepts and mastering in skills of							
modelling and problems solving							
learned in class, textbooks and							
reading materials and their ability to							
apply subject-related knowledge.							
						100%	

For a student to pass the course, at least 30% of the maximum mark for the examination should be obtained.

5. Assessment Rubrics

Applicable to students admitted in Semester A 2022/23 and thereafter

Assessment Task	Criterion	Excellent (A+, A, A-)	Good (B+, B)	Marginal (B-, C+, C)	Failure (F)
1. Assignments	Students' ability to model the systems and systematically analyse them.	Excellent	Good	Marginal	Failure
2. Final exam	It assesses students' ability to solve different types of simulation problems.	Excellent	Good	Marginal	Failure

Applicable to students admitted before Semester A 2022/23

Assessment Task	Criterion	Excellent (A+, A, A-)	Good (B+, B, B-)	Fair (C+, C, C-)	Marginal (D)	Failure (F)
1. Assignments	Students' ability to model the systems and systematically analyse them.	High	Significant	Moderate	Basic	Not even reaching marginal levels
2. Final exam	It assesses students' ability to solve different types of simulation problems.	High	Significant	Moderate	Basic	Not even reaching marginal levels

Part III Other Information

Keyword Syllabus

- Probability and Statistics
- > Arena
- > Random Number Generation

- Input Analysis
 Output Analysis
 Comparing Systems
 Variance Reduction

2. Reading List

2.1 Compulsory Readings

1.	Law, A. M., Simulation Modeling and Analysis, 5th edition, McGraw-Hill Education, New
	York, 2015.
2.	Kelton, W. D., Sadowski, R. P., and Zupick, N. B., Simulation with Arena, 6 th edition,
	McGraw-Hill, New York, 2015.

2.2 Additional Readings

NIL