City University of Hong Kong Course Syllabus

offered by Department of Systems Engineering & Engineering Management with effect from Semester B 2020 / 21

Part I Course Overview

Course Title:	Systems Modeling and Management							
Course Code:	SEEM8202							
Course Duration:								
Credit Units: 3								
Level:	R8							
Medium of Instruction:	English							
Medium of Assessment:	English							
Prerequisites : (Course Code and Title)	Nil							
Precursors: (Course Code and Title)	Nil							
Equivalent Courses : (Course Code and Title)	Nil							
Exclusive Courses : (Course Code and Title)	Nil							

Part II Course Details

1. Abstract

This course includes the introduction of: 1) simulation models and simulation studies; 2) simulation language (Arena); 3) statistical aspects including input analysis, random variate generation, output analysis, and variance reduction techniques; and 4) simulation optimization techniques.

2. Course Intended Learning Outcomes (CILOs)

No.	CILOs	Weighting	Discovery-enriched curriculum related learning outcomes (please tick where appropriate)			
			A1	A2	A3	
1.	Introduce the fundamental concepts and principles in system modelling and simulation.	20%	~	~		
2.	Introduce appropriate simulation language for modelling systems	30%		~	~	
3.	Understand basic statistical aspects related to simulation modelling	30%		~	~	
4.	Apply methodologies for improving the performance of stochastic systems	20%	~	~		
		100%				

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs)

TLA	Brief Description	CIL	O No.		Hours/week (if		
	_	1	2	3	4	5	applicable)
Large Class Activities	Learning through teaching is primarily based on lectures. Mini-lectures and tutorials will be used to facilitate understanding and applications of various concepts and methods.	~	~	✓	✓	~	26 hours/ sem
Tutorial Exercises	The homework exercises provide students with the opportunities to familiarize themselves with the methods learnt during the lectures.	~	~	~	~	~	21 hours/ sem

4. Assessment Tasks/Activities (ATs)

Assessment Tasks/Activities	CILO No.					Weighting	Remarks
	1	2	3	4	5		
Continuous Assessment: 40	%						
Assignments	\checkmark	\checkmark	✓	✓	\checkmark	40%	
Students are required to							
effectively apply knowledge							
and skills learned from the							
course in solving some simple							
practical problems.							
Examination: <u>60</u> % (duration	on:	2 Ho	ours)				
Exam	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	60%	
Students will be assessed via							
the examination their							
understanding of concepts and							
mastering in skills of modelling							
and problems solving learned in							
class, textbooks and reading							
materials and their ability to							
apply subject-related							
knowledge.							
						100%	

For a student to pass the course, at least 30% of the maximum mark for the examination should be obtained.

5. Assessment Rubrics

Assessment Task	Criterion	Excellent (A+, A, A-)	Good (B+, B, B-)	Fair (C+, C, C-)	Marginal (D)	Failure (F)
1. Assignments	Students' ability to model the systems and systematically analyse them.	High	Significant	Moderate	Basic	Not even reaching marginal levels
2. Final exam	It assesses students' ability to solve different types of simulation problems.	High	Significant	Moderate	Basic	Not even reaching marginal levels

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

- Probability and Statistics
- Arena
- Random Number Generation
- Input Analysis
- Output Analysis
- Comparing Systems
- Variance Reduction

2. Reading List

2.1 Compulsory Readings

1.	Law, A. M., Simulation Modeling and Analysis, 5th edition, McGraw-Hill Education, New York, 2015.
2.	Kelton, W. D., Sadowski, R. P., and Zupick, N. B., Simulation with Arena, 6 th edition, McGraw-Hill, New York, 2015.

2.2 Additional Readings

NIL