City University of Hong Kong Course Syllabus

offered by School of Energy and Environment with effect from Semester A 2022 / 23

Part I Course Overview

Course Title:	Environmental Chemistry and Physics
Course Code:	SEE6224
Course Duration:	One semester
Credit Units:	3
Level:	P6
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites : (Course Code and Title)	Nil
Precursors : (Course Code and Title)	Nil
Equivalent Courses: (Course Code and Title)	SEE8224
Exclusive Courses : (Course Code and Title)	Nil

Part II Course Details

1. Abstract

This course will provide students with knowledge of fundamental chemistry and physics principles that govern different processes in the environment, and the different analytical instrumentation and techniques that can be used to study them. Topics covered can include chemical kinetics, reaction dynamics, reactions of gas-phase species, reactions in liquid solutions, environmental fluid dynamicsenvironmental reactor models, transport mechanisms, photochemistry, spectroscopy, mass spectrometry, and chromatography.

2. Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs	Weighting (if applicable)	learnin	lum rel g outco tick	lated omes
			Al	A2	A3
1.	Demonstrate an understanding of chemical kinetics, reaction dynamics, reactions of gas-phase species, reactions in liquid solutions, photochemical processes, transport mechanisms, and environmental fluid dynamics.	50%	V		
2.	Describe the principles of different analytical instrumentation and techniques, and be able to apply these analytical instrumentation and techniques to measure trace level concentrations of environmental pollutants	50%	V	V	
		100%			

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs)

(TLAs designed to facilitate students' achievement of the CILOs.)

TLA	Brief Description	CILO No.					Hours/week (if	
		1	2				applicable)	
Lectures	Explain key concepts related to environmental chemistry and physics, and the use of different environmental analytical instrumentation and techniques.	V	V				3.0	
Tutorial	Discuss contemporary topics of environmental chemistry and physics. Hands-on demonstrations of different environmental	\checkmark					2.0	

analytical				
instrumentation/techniques may				
be performed.				

4. Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

Assessment Tasks/Activities	CILO No.		V	Veighting	Remarks			
	1	2						
Continuous Assessment: 50%								
Mid-term						3	0%	
Assignment						2	20%	
Examination: 50% (duration: 2h			, if a	pplic	able)			
* The weightings should add up to	100%.					1	00%	

To pass a course, a student must do ALL of the following:

- 1. obtain at least 30% of the total marks allocated towards coursework (combination of assignments, pop quizzes, term paper, lab reports and/ or quiz, if applicable);
- 2. obtain at least 30% of the total marks allocated towards final examination (if applicable); and
- 3. meet the criteria listed in the section on Assessment Rubric

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Assessment Task	Criterion	Excellent	Good	Marginal	Failure
		(A+, A, A-)	(B+, B)	(B-, C+, C)	(F)
1. Mid-term	Ability to explain key concepts and solve problems	High	Significant	Moderate to basic	Not even reaching marginal levels
2. Assignment	Ability to apply key concepts and solve problems	High	Significant	Moderate to basic	Not even reaching marginal levels
3. Final exam	Ability to explain key concepts and solve problems	High	Significant	Moderate to basic	Not even reaching marginal levels

Applicable to students admitted in Semester A 2022/23 and thereafter

Applicable to students admitted before Semester A 2022/23

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
1. Mid-term	Ability to explain key concepts and solve problems	High	Significant	Moderate	Basic	Not even reaching marginal levels
2. Assignment	Ability to apply key concepts and solve problems	High	Significant	Moderate	Basic	Not even reaching marginal levels
3. Final exam	Ability to explain key concepts and solve problems	High	Significant	Moderate	Basic	Not even reaching marginal levels

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

(An indication of the key topics of the course.)

- 1. Gas-phase kinetics, reaction rates and mechanisms
- a. Pressure, temperature and energy of an ideal gas
- b. Maxwell distributions of speeds and energy
- c. Molecular collisions and mean free path
- d. Rate laws: First, second, pseudo-first order and higher order reactions
- e. Temperature dependence of rate constants
- f. Reaction mechanisms: Elementary reactions; Opposing reactions; Parallel reactions; Consecutive reactions and the steady-state approximation; Unimolecular decomposition; Free radical chain and branched reactions
- g. Reaction dynamics: Collision theory; Activated complex theory
- 2. Reactions in liquid solutions
- a. Cage effect, friction and diffusion control
- b. Reactions of charged species in solution
- c. Uptake and reaction of gases in liquids
- 3. Environmental fluid dynamics and transport mechanisms
- a. Viscous and confined flows
- b. Turbulence and mixing
- c. Boundary-layer flows
- 4. Photochemistry
- a. Absorption and emission of light
- b. Photophysical processes
- 5. Spectroscopy
- a. Components of optical instruments
- b. UV-vis absorption spectroscopy
- c. Infrared spectroscopy
- d. Raman spectroscopy
- 6. Mass spectrometry
- a. Ionization sources
- b. Ionization techniques
- c. Components of mass spectrometers
- 7. Chromatography
- a. Migration rates of solutes
- b. Band broadening and column efficiency
- c. Optimization of column performance
- d. Gas chromatography
- e. Liquid chromatography
- f. Ion chromatography

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

1.	McQuarrie and Simon, Physical Chemistry: A Molecular Approach, 1st Edition, University
	Science Books (1997)
2.	Atkins and de Paula, <i>Physical Chemistry</i> , 9th Edition, Oxford University Press (2010)

3.	Houston, Chemical Kinetics and Reaction Dynamics, 1st Edition, Dover Books (2006)	
4.	Skoog, Holler and Crouch, Principles of Instrumental Analysis, 6th Edition, Thomas	s
	Brooks/Cole (2007)	

2.2 Additional Readings *(Additional references for students to learn to expand their knowledge about the subject.)*

1.	Hollas, Modern Spectroscopy, 4th Edition, Wiley (2004)
2.	Gross, Mass Spectrometry: A Textbook, 1st Edition, Springer International Publishing (2004)
3.	McLafferty, Interpretation of Mass Spectra, 4th Edition, University Science Books (1993)
4.	Pope, Turbulent Flows, Cambridge University Press (2000)
5.	Pedlosky, Geophysical Fluid Dynamics, Springer (1987)
6.	Foken, Micrometeorology, Springer (2008)