City University of Hong Kong Course Syllabus

offered by School of Energy and Environment with effect from Semester A 2022/23

Part I Course Overview

Course Title:	Gas Engineering – Theories and Practices
Course Code:	SEE6120
Course Duration:	One semester
Credit Units:	3
Level:	P6
Proposed Area: (for GE courses only)	Study of Societies, Social and Business Organisations
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites : (Course Code and Title)	Nil
Precursors : (Course Code and Title)	Nil
Equivalent Courses : <i>(Course Code and Title)</i>	Nil
Exclusive Courses : <i>(Course Code and Title)</i>	Nil

1. Abstract

This course is mainly related to gas energy value chain/systems engineering, including Exploration and Production, Transportation and Storage, and Utilization. Engineering practices dealing with energy efficiency, energy services, facility and plant management, sustainability and environmental compliance, and alternative energy technologies will be taught in the course. Particular focuses will be given to latest development in Mainland China and Hong Kong.

2. Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs	Weighting	Disco	very-en	riched
		(if	curricu	ulum rel	lated
		applicable)	learnii	ng outco	omes
			(please	e tick	where
			appropriate)		
			Al	A2	A3
1.	Discuss key features of gas energy value chain and contribution	10%	\checkmark		
	in energy consumption in worldwide and local markets				
2.	Conduct comparative study on energy efficiency and	10%		\checkmark	
	environmental impact of gas energy and other forms of energy				
3.	Describe commonly available types of gas energy and elaborate	50%	\checkmark	\checkmark	
	engineering practices and utilization solutions				
4.	Identify technologies to enhance utilization of gas energy	10%	\checkmark	\checkmark	
5.	Analyze the potential of upcoming gas energy technologies	10%	\checkmark		
6.	Formulate practical and sustainable gas energy utilization and	10%	\checkmark	\checkmark	
	engineering solutions for real-life applications				
		100%			

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs)

(TLAs designed to facilitate students' achievement of the CILOs.)

TLA	Brief Description	CIL	O No.	Hours/week				
		1	2	3	4	5	6	(if
								applicable)
Lecture	Explain key concepts, such as gas engineering practices and gas utilization technologies		\checkmark		\checkmark	\checkmark	\checkmark	2.5 hours/week
Tutorial,	Solidify students' concepts with				\checkmark			0.5
class demo	practice							hour/week

4. Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

Assessment	CILO No.						Weighting	Remarks
Tasks/Activities	1	2	3	4	5	6		
Continuous Assessment: 60	%)						
Assignment	\checkmark					\checkmark	30%	
Project							30%	
Examination: 40 % (dura	tion:	2 hou	urs, i	f appl	licabl	e)		
							100%	

Examination duration: 2 hrs

Percentage of coursework, examination, etc.: 60% by coursework; 40% by exam

To pass a course, a student must do ALL of the following:

- 1) obtain at least 30% of the total marks allocated towards coursework (combination of assignments, pop quizzes, term paper, lab reports and/ or quiz, if applicable);
- 2) obtain at least 30% of the total marks allocated towards final examination (if applicable); and
- 3) meet the criteria listed in the section on Grading of Student Achievement.

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Applicable to students admitted in Semester A 2022/23 and thereafter

Assessment Task	Criterion	Excellent	Good	Marginal	Failure	
		(A+, A, A-)	(B+, B)	(B-, C+, C)	(F)	
1. Assignment	Ability to analyse and	Able to solve	Able to use the correct	Can determine the	Not able to use the correct	
	solve questions related to	problems without any	concepts for problem	relevant equations and	concept to solve a	
	gas engineering	errors	solving, but have errors	show some attempt to	problem	
			in calculation	solve a problem in the		
				correct direction		
2. Project	Ability to analyse and	Able to correctly	Able to give reasonable	Can give reasonable	Not able to analyse and	
	device practical solutions	analyse and device	analysis but with errors	approach to solution but	device solutions to solve a	
	related to gas engineering	practice solutions		with insufficient analysis	problem	
3. Final exam	Ability to analyse and	Able to solve	Able to use the correct	Can determine the	Not able to use the correct	
	solve practical problems	problems without any	concepts for problem	relevant equations and	concept to solve a	
	related to gas engineering	errors	solving, but have errors	show some attempt to	problem	
			in calculation	solve a problem in the		
				correct direction		

Applicable to students admitted before Semester A 2022/23

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure	
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)	
1. Assignment	Ability to analyse	Able to solve	Able to use the	Can determine the	Can describe the	Not able to use the	
	and solve questions	problems without	correct concepts for	relevant equations	underlying concept	correct concept to	
	related to gas	any errors	problem solving, but	and show some	but not able to solve	solve a problem	
	engineering		have errors in	attempt to solve a	the problem		
			calculation	problem in the			
				correct direction			
2. Project	Ability to analyse	Able to correctly	Able to give	Can give reasonable	Can only give general	Not able to analyse	
	and device practical	analyse and	reasonable analysis	approach to	approach to solve	and device solutions	
	solutions related to	device practice	but with errors	solution but with	problem with	to solve a problem	
	gas engineering	solutions		insufficient analysis	insufficient analysis		
3. Final exam	Ability to analyse	Able to solve	Able to use the	Can determine the	Can describe the	Not able to use the	
	and solve practical	problems without	correct concepts for	relevant equations	underlying concept	correct concept to	
	problems related to	any errors	problem solving, but	and show some	but not able to solve	solve a problem	
	gas engineering		have errors in	attempt to solve a	the problem		
			calculation	problem in the			
				correct direction			

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

(An indication of the key topics of the course.)

Natural Gas; Manufactured gas; Biogas; Conventional/unconventional gas; LNG; LPG; Gas combustion; Gas properties and inter-changeability; Supply reliability; Smart metering; Energy efficiency; Energy conversion; Gas-fired equipments; New energy vehicles; Combined-Heat-Power; Methane hydrate; Hydrogen production, economy and technologies; Fuel cells

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

NIL

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

1.	Natural Gas Engineering Handbook, Guo, Boyan, Ghalambor, Ali, 2 nd ed. Elsevier Science, 2012.
2.	Advanced Natural Gas Engineering, Wang, Xiuli, Economides, Michael. Elsevier Science, 2013
3.	Natural Gas Engineering and Safety Challenges: Downstream Process, Analysis, Utilization and Safety, Nasr, G.G., Connor, N. E., Springer 2014
4.	Combustion Engineering and Gas Utilisation, third edition, edited by J. R. Cornforth, British Gas
5.	Gas Engineers Handbook, Industrial Press Inc. (1968)
6.	Tolley's Domestic Gas Installation Practice (Gas Service Technology Volume 2), Edited by Frank Saxon