City University of Hong Kong Course Syllabus

offered by Department of Mechanical Engineering with effect from Semester A 2022 / 23

Part I Course Over	view
Course Title:	CAD/CAM Integration
Course Code:	MNE6001
Course Duration:	1 semester
Credit Units:	3 credits
Level:	P6
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites: (Course Code and Title)	Nil
Precursors: (Course Code and Title)	Nil
Equivalent Courses : (Course Code and Title)	MBE6001 CAD/CAM Integration OR MNE8112 CAD/CAM/CAE Integration
Exclusive Courses: (Course Code and Title)	Nil

Part II Course Details

1. Abstract

The aim of this course is to develop a comprehensive understanding of technology underlying Computer Aided Design and Manufacture. Students will learn how to apply CAD/CAM technology to solve design/manufacturing problems with a significant geometric component.

2. Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs	Weighting (if applicable)	Discovery-enriched curriculum related learning outcomes (please tick where appropriate)		
			A1	A2	<i>A3</i>
1.	describe the mathematical basis in the technique of representation of geometric entities including parametric curves and free-form surfaces.		√	√	
2.	describe the basic theories and algorithms for solid modelling and other advanced representation schemes.		√	√	
3.	describe the techniques in CNC toolpath computation for 3-axis and multi-axis machining, feature recognition and selected topics in advanced CAD/CAM applications.		√	~	
4.	apply relevant techniques to design algorithms for simple CAD/CAM operations.			√	✓
5.	interpret a design/manufacturing problem with a significant geometric component, translate it into an algorithmic problem, and apply relevant techniques to solve it.			✓	√
		N.A.			

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs)

(TLAs designed to facilitate students' achievement of the CILOs.)

TLA	Brief Description	CILO No.					Hours/week (if applicable)	
	_	1	2	3	4	5		
Lecture	Lectures covering three major areas	✓	✓	✓	✓	✓	2 hrs/week	
	on CAD modelling, CAM							
	processing, and 3D printing.							
Tutorial	Tutorials on CAD modelling,	✓	✓		✓	✓	1 hr/week for 8 weeks	
	including spline-based modelling,							
	subdivision-based modelling and							
	solid modelling.							
Mini-project	Mini-projects covering various			✓	✓	✓	1 hr/week for 5 weeks	
	topics on CAM, 3D printing and							
	other closely related topics.							

4. Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

Assessment Tasks/Activities	CILO No.				Weighting	Remarks	
	1	2	3	4	5		
Continuous Assessment: 40%							
Assignment / Test	✓	✓		✓	✓	15%	
Mini-project			✓	✓	✓	25%	
Examination: 60% (duration	: 2 h	ours))				
Examination	✓	✓	✓	✓	✓	60%	
						100%	

For a student to pass the course, at least 30% of the maximum mark for both coursework and examination should be obtained.

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Applicable to students admitted in Semester A 2022/23 and thereafter

Assessment Task	Criterion	Excellent	Good	Marginal	Failure
		(A+, A, A-)	(B+, B)	(B-,C+,C)	(F)
1. Examination	Through examination, the students will be evaluated on the knowledge in the fields of CAD/CAM integration.	-	Significant	Moderate	Not even reaching marginal levels
2. Assignment/ Test	Tutorials mainly covering various topics of lectures on CAD modelling and processing.	_	Significant	Moderate	Not even reaching marginal levels
3. Mini-project	Mini-projects mainly covering topics on CAM processing, 3D printing, and other closely related topics.		Significant	Moderate	Not even reaching marginal levels

Applicable to students admitted before Semester A 2022/23

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
1. Examination	Through examination, the students will be evaluated on the knowledge in the fields of CAD/CAM integration.	High	Significant	Moderate	Basic	Not even reaching marginal levels
2. Assignment/ Test	Tutorials mainly covering various topics of lectures on CAD modelling and processing.	High	Significant	Moderate	Basic	Not even reaching marginal levels
3. Mini-project	Mini-projects mainly covering topics on CAM processing, 3D printing, and other closely related topics.	•	Significant	Moderate	Basic	Not even reaching marginal levels

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

(An indication of the key topics of the course.)

CAD/CAM systems, Bezier, B-spline and NURBS for curve and surface modelling, subdivision-based modelling, CSG and B-Rep for solid modelling, algorithms for curve/curve intersection, curve/surface intersection and surface/surface intersection, algorithms for point membership classification and boundary evaluation, algorithms for 3-axis and multi-axis toolpath extraction, data processing for 3D printing.

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

None

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

1.	David F. Rogers, "An Introduction to NURBS: with Historical Perspectives", Academic Press,
	San Francisco, 2001.
2.	G. Farin, "Curves and surfaces for CAGD: a practical guide", Morgan Kaufmann Publishers,
	Academic Press, San Diego, 2002.
3.	I. Zeid, "Mastering CAD/CAM with Engineering Subscription Card", McGraw-Hill, 2004.
4.	I. Gibson, D. Rosen and B. Stucker, "Additive Manufacturing Technologies - 3D Printing, Rapid
	Prototyping, and Direct Digital Manufacturing", Springer-Verlag New York, 2015.
5.	Computer-Aided Design Journal, Elsevier Science.