City University of Hong Kong Course Syllabus

offered by Department of Mathematics with effect from Semester B 2021/22

Part I Course Overview

Course Title:	Selected Topics in Applied Analysis
Course Code:	MA8004
Course Duration:	One semester
Credit Units:	3
Level:	R8
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites : (Course Code and Title)	Nil
Precursors : (Course Code and Title)	Nil
Equivalent Courses: (Course Code and Title)	Nil
Exclusive Courses : (Course Code and Title)	Nil

Part II Course Details

1. Abstract

This course aims to introduce research students to three active fields of research about partial differential equations depending on a parameter, which may go either to zero or to plus infinity, namely:

- Asymptotic analysis
- Homogenization
- Penalization

This will be done by studying four fundamental boundary value problems in applied mathematics, which also have numerous real-life applications:

- 1. Stokes equations: existence, uniqueness, and asymptotic analysis in infinite cylinders,
- 2. Elasticity equations: existence, uniqueness, and asymptotic analysis in thin plates,
- 3. Diffusion equation: existence, uniqueness, and homogenization,
- 4. Obstacle problems: existence, uniqueness, and penalization.

The course is self-contained, save for basic theorems about Sobolev spaces.

2. Course Intended Learning Outcomes (CILOs)

No.	CILOs [#]	Weighting*	Discov	ery-eni	riched
		(if	curricu	lum rel	ated
		applicable)	learnin	g outco	omes
			(please	tick	where
			approp	riate)	
			A1	A2	A3
1.	Define weak, strong, and classical solutions for any boundary value problem made of partial differential equations and boundary conditions	10%	\checkmark	~	
2.	Prove existence, uniqueness and stability of weak solutions to boundary value problems of elliptic type, by using Riesz/Lax Milgram theorem	10%	~	~	
3.	Find the limit of the weak solution to a boundary value problem depending on a parameter, by using the "corrector method" taught in Chapter 1 of this course.	20%		~	\checkmark
4.	Find the limit of the solution of a boundary value problem depending on a parameter by using the "scaling method" taught in Chapter 2.	20%		\checkmark	\checkmark
5.	Find the homogenized problem corresponding to a PDE with highly oscillating coefficients by using the technique taught in Chapter 3	20%	~	\checkmark	\checkmark
6.	Compute the solution of a constrained problem by using the penalization method taught in Chapter 4	20%	\checkmark	\checkmark	\checkmark
		100%			

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs)

TLA	Brief Description	CILO No.						Hours/week
		1	2	3	4	5	6	(if applicable)
Lectures	Learning through teaching is primarily based on lectures.	~	~	~	~	~	~	3 hours/week
Assignments	Learning through take-home assignments helps students understand how to apply the techniques learned in this course to other boundary value problems modeling physical phenomena.	~	\checkmark	~	~	\checkmark	~	After-class

4. Assessment Tasks/Activities (ATs)

Assessment	CILO No.				Weighting*	Remarks		
Tasks/Activities	1	2	3	4	5	6		
Continuous Assessment: 50%								
Test	V	~	~	V			25%	Questions are designed for the first part of the course to see how well students have learned to prove existence, uniqueness, and stability of weak solutions to a boundary value problem of elliptic type.
Hand-in assignments	~	~	~	~	~	~	25%	These are skills based assessment to help students learn how to apply the techniques learned in this course to various mathematical problems modeling physical phenomena.
Examination: 50%	./	./	./	./	./	./	500/	Examination exactions and
(duration: 3 hours)	v	v	v	v	v	v	50%	Examination questions are designed to see how far students have achieved their intended learning outcomes. Questions will primarily be skills and understanding based, to assess the student's versatility in techniques used to tackle boundary values problems depending on a parameter.
							100%	

5. Assessment Rubrics

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
1. Test	Demonstration of the understanding of the first part of the course	High	Significant	Moderate	Basic	Not even reaching marginal levels
2. Hand-in assignments	Demonstration of the understanding of the basic techniques taught in this course	High	Significant	Moderate	Basic	Not even reaching marginal levels
3. Examination	Demonstration of the skills and versatility in applied analysis.	High	Significant	Moderate	Basic	Not even reaching marginal levels

Part III Other Information

1. Keyword Syllabus

Asymptotic analysis, Homogenization, Penalization; weak solutions to partial differential equations, Riesz theorem and its generalization by Lax-Milgram, scaling, a priori estimates; Stokes equations, Elasticity equations, Diffusion problem, Obstacle problem.

2. Reading List

2.1 Compulsory Readings

1.	
2.	
3.	

2.2 Additional Readings

1.	Michel M. CHIPOT: Asymptotic Issues for some Partial Differential Equations. Imperial College Press, 2016.
2.	Philippe G. CIARLET: Mathematical Elasticity, Vol. II: Theory of Plates. North-Holland, 1997.
3.	Doina CIORANESCU, Alain DAMLAMIAN, Georges GRISO: The Periodic Unfolding Method. Theory and Applications to Partial Differential Problems. Springer, 2018.
4.	David KINDERLEHRER, Guido STAMPACCHIA: An Introduction to Variational Inequalities and Their Applications. SIAM, 2000.