City University of Hong Kong Course Syllabus

offered by School of Energy and Environment with effect from Semester A 2019/20

Part I Course Overview

Course Title:	Advanced Thermosciences for Energy Engineering
Course Code:	SEE8130
Course Duration:	One semester
Credit Units:	3
Level:	R8
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites: (Course Code and Title)	Nil
Precursors: (Course Code and Title)	Nil
Equivalent Courses : (Course Code and Title)	Nil
Exclusive Courses: (Course Code and Title)	Nil

Part II Course Details

1. Abstract

This course aims to introduce the concept of thermosciences (including but not limited to thermodynamics and heat transfer) and applies them to a wide range of engineering technologies related to energy. These principles will help the students to build a strong foundation for further innovative studies of energy engineering. Problems-solving in energy engineering would be explored and the skills in critical thinking would be developed.

2. Course Intended Learning Outcomes (CILOs)

No.	CILOs	Weighting	learnin (please approp	lum rel g outco tick riate)	ated omes where
			A1	A2	A3
1.	Describe and apply principles of thermosciences in the context of energy engineering (including but not limited to thermodynamics and heat transfer)	40%	Ø	Ø	
2.	Analyse the energy production and consumption processes through case studies in processes and advanced/smart engineering devices.	40%	Ø	V	
3.	Apply the principles to problem-solving and designing of new energy systems (not limited to energy generation, utilisation and storage). Use a systems approach to simplify a complex problem.	20%		Ø	
		100%			

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs)

TLA	Brief Description		CILO No.				Hours/week (if	
		1	2	3				applicable)
Lecture	A format of two-third lectures and							
	one-third tutorials will be used to	\square		\square				2 hours/week
	help the students to understand							
	and explore key issues, their							
	underlying theory and the							
	selection of case studies.							
Tutorial	Topic-related tutorials will give							
	the students an opportunity to	\square	\square	\square				1 hour/week
	practice. Mathematical-based and							
	conceptual-based exercises will be							
	used in a blended manner.							
Presentations	The oral presentation is designed							
	to develop information literacy	\square		\square				
	skills and to acquire depth of							
	knowledge on selected topics.							

4. Assessment Tasks/Activities (ATs)

Assessment Tasks/Activities	CILO No.					Weighting	Remarks
	1	2	3				
Continuous Assessment:70%							
In-class quizzes		\square	\square			20%	
(two quizzes)							
Assignment		\square	\square			30%	
(individual-based)							
Presentation (with written report)			\square			20%	
Examination: <u>30</u> % (duration: 2	hours	s)					
	•					100%	

To pass a course, a student must do ALL of the following:

- 1. obtain at least 30% of the total marks allocated towards coursework (combination of assignments, pop quizzes, term paper, lab reports and/ or quiz, if applicable);
- 2. obtain at least 30% of the total marks allocated towards final examination (if applicable); and
- 3. meet the criteria listed in the section on Assessment Rubrics.

5. Assessment Rubrics

Assess	sment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
			(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
1.	In-class quizzes	Ability to analyse and solve mathematical-based and conceptual-based problems	High	Significant	Moderate	Basic	Not even reaching marginal levels
2. assign	Individual ment	It is a formative assessment on technical content (knowledge, comprehension, application, analysis) and the ability to engage in a structured way with the course materials.	High	Significant	Moderate	Basic	Not even reaching marginal levels
3.	Group presentation	Assessed on the basis of quantity and quality of information and the skills demonstrated in analysing a selected topic.	High	Significant	Moderate	Basic	Not even reaching marginal levels
4.	Final Examination	Summative assessment on the technical accuracy of calculations and clarity of conceptual understanding of topics.	High	Significant	Moderate	Basic	Not even reaching marginal levels

Part III Other Information

1. Keyword Syllabus

- Advanced Thermodynamics
- Heat Transfer in reactions, devices etc.
- Energy Production and Consumption Process
- Thermal Reaction Engineering
- Separation and Equilibrium

2. Reading List

2.1 Compulsory Readings

1. D. Winterbone, A. Turan, Advanced Thermodynamics for Engineers (2nd edition), Elsevier.

2.2 Additional Readings

1.	H. Scott Fogler, M. Nihat Gurmen, Elements of Chemical Reaction Engineering (1 st edition), Wiley
2.	L. Theodore, Heat Transfer Applications for Practicing Engineer, Wiley.
3.	S. K. Agrawal, Applied Thermosciences: Principles and Applications, Anshan.
4.	Additional Notes from lectures