City University of Hong Kong Course Syllabus

offered by Department of Physics with effect from Semester A 2020/21

Part I Course Overview

Advanced Solid State Physics
РНУ6521
One semester
3
P6
English
English
Nil
AP3251/PHY3251 Quantum Mechanics or equivalent AP3290/PHY3290 Thermodynamics or equivalent
Nil
PHY8521 Advanced Solid State Physics

Part II Course Details

1. Abstract

This course aims to equip graduate students with advanced knowledge of solid state physics that are necessary to understand contemporary literature and conduct frontier research in physics. The course will start with a review of basic structural and electronic properties of crystals, with an emphasis on the band theory of electrons in periodic potentials. Then, the course will move on to thermodynamic and transport properties of metals, including the temperature dependence of specific heat and conductance, and basic magneto-transport properties. Next, the course covers a few advanced topics in topological phases of matter, including Berry phases, topological band theory, quantum Hall effects, topological insulators, a brief introduction to topological orders, and Berry phase effect in transport properties of metals.

2. Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs	Weighting	Discov	•		
		(if	curricu	lum rel	lated	
		applicable)	learnin	g outco	omes	
			(please	tick	where	
			appropriate)			
			A1	A2	A3	
1	Acquire the basic knowledge of crystallography and		✓	\checkmark		
	electronic structure in solids, and the knowledge of					
	fundamental differences between metals and insulators					
2	Able to derive the Bloch theorem, and apply it to study		✓	\checkmark	\checkmark	
	band structures of toy models; able to analyze basic					
	thermodynamic and transport properties of metals					
3	Able to compute the Berry phase and topological properties		✓	\checkmark	✓	
	of insulators in certain toy models					
4	Acquire the basic knowledge of quantum Hall effects, edge		✓	✓		
	states, topological insulators, Berry phase effect in metals					
		100%				

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3.

Teaching and Learning Activities (TLAs) (*TLAs designed to facilitate students' achievement of the CILOs.*)

TLA	Brief Description	CILO No.			•	Hours/week (if applicable)
		1	2	3	4	
Lecture	Explain key concepts and formulate fundamental theories of selected topics in solid state physics	~	✓ 	~	✓	2 hrs/wk
Tutorial	Solve some problems with certain techniques and discuss examples of the physical concepts and phenomena discussed in the lectures	~	~	~	•	1 hrs/wk

4. Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

Assessment Tasks/Activities	CILO No.				Weighting	Remarks
	1	2	3	4		
Continuous Assessment: 70 %						
Homework, Quizzes, etc	\checkmark	\checkmark	\checkmark	✓	70%	
Examination: 30%	✓	✓	✓	✓	30%	
(duration: 2 hrs)						
					100%	

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
1. Assignment	1. Demonstrate correct understanding of	Will exhibit a high level of	Will exhibit a good level of	Will exhibit a basic level of competence	Will exhibit some deficiencies in	Will exhibit lack of competence in
	key concepts.	competence in	competence in	in understanding,	understanding,	understanding,
	2. Being able to use	understanding,	understanding,	explaining, and	explaining, and	explaining, and
	the taught	explaining, and	explaining, and	integrating the	integrating the	integrating the
	knowledge and	integrating the	integrating the	knowledge in	knowledge in written	knowledge in written
	theory to solve	knowledge in	knowledge in	written format	format	format
	problems	written format	written format			
2. Examination	 Demonstrate correct understanding of key concepts. Being able to use the taught knowledge and theory to solve problems 	Will exhibit a high level of competence in understanding, explaining, and integrating the knowledge in written format	Will exhibit a good level of competence in understanding, explaining, and integrating the knowledge in written format	Will exhibit a basic level of competence in understanding, explaining, and integrating the knowledge in written format	Will exhibit some deficiencies in understanding, explaining, and integrating the knowledge in written format	Will exhibit lack of competence in understanding, explaining, and integrating the knowledge in written format

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

- a. Review of crystal structure, band theory, tight-binding models, concept of metals and insulators
- b. Thermodynamic properties, specific heat
- c. Transport properties of metals
- d. Measuring Fermi surfaces, quantum oscillations
- e. Band insulators, Berry phases, topological band theory
- f. Introduction to theories of quantum Hall effects, edge transport, topological insulators, topological orders
- g. Berry phase effect in transport properties of metals

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

None.

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

1.	N. W. Ashcroft and N. D. Mermin, Solid State Physics (Thomson Press, 2003)
2.	S. H. Simon, Solid State Basics (Oxford University Press, Oxford, 2013)
3.	C. Kittel, Introduction to Solid State Physics (Wiley, 8 ed, 2004)
4.	P. Phillips, Advanced Solid State Physics (CRC press, 2002)