City University of Hong Kong Course Syllabus

offered by Department of Physics with effect from Semester A 2020/21

Part I Course Overview

Course Title:	Statistical Mechanics					
Course Code:	PHY6252					
Course Duration:	1 semester					
Credit Units:	3 credits					
Level:	P6					
Medium of						
Instruction:	English					
Medium of						
Assessment:	English					
Prerequisites:						
(Course Code and Title)	Nil					
Precursors:						
(Course Code and Title)	Nil					
Equivalent Courses:						
(Course Code and Title)	Nil					
Exclusive Courses:						
(Course Code and Title)	PHY8252 Statistical Mechanics					

Part II Course Details

1. Abstract

This course aims to equip graduate students with knowledges of statistical mechanics that are necessary to conduct research and understand literature particularly relevant to condensed matter physics. The course shall start with the fundamental concepts of Statistical Mechanics. Then the course discusses weakly interacting systems and strongly interacting Systems. In the end, the fluctuation-dissipation theorem and other relevant knowledges of dissipative systems will be introduced.

2. Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs	Weighting	Discov	very-en	riched
		(if	curricu	lum re	lated
		applicable)	learnin	g outco	omes
			(please	tick	where
			appropriate)		
			Al	A2	A3
1.	Recognize and use appropriately important technical terms		✓		
	and definitions				
2.	Use appropriate mathematical notations and apply in		✓	✓	
	concise form the laws of quantum mechanics to the study				
	of modern physics problems				
3.	Apply the laws of statistical mechanics to the study of		✓	✓	\checkmark
	modern physics problems				
4.	Solve real and hypothetical problems in statistical physics		✓	\checkmark	\checkmark
	by identifying the underlying physics and analyzing the				
	problem				
		100%			

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3.

Teaching and Learning Activities (TLAs) (*TLAs designed to facilitate students' achievement of the CILOs.*)

TLA	Brief Description	CILO	CILO No.		Hours/week	
		1	2	3	4	(if applicable)
Lecture	Explain key concepts and theory of topics of the course	~	~	~		2 hrs/wk
Tutorial	Explain how some problems are solved and the techniques used explain some concepts	✓	~	✓	~	1 hr/wk

4. Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

Assessment Tasks/Activities	CILO No.				Weighting	Remarks
		2	3	4		
Continuous Assessment: 70%						
Homework, Quizzes etc.		~	~	✓	70%	
Examination: 30%		~	~	✓	30%	
(duration: 2 hours)						
					100%	

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
1. Assignment	1. Capacity for using	Will exhibit a high	Will exhibit a	Will exhibit a basic	Will exhibit some	Will exhibit lack of
	physics knowledge	level of	good level of	level of competence	deficiencies in	competence in
	and theory to solve	competence in	competence in	in understanding,	understanding,	understanding,
	problems	understanding,	understanding,	explaining, and	explaining, and	explaining, and
	2. Demonstrate	explaining, and	explaining, and	integrating the	integrating the	integrating the
	correct	integrating the	integrating the	knowledge in	knowledge in written	knowledge in written
	understanding of	knowledge in	knowledge in	written format	format	format
	key concepts.	written format	written format			
2. Examination	1. Capacity for using	Will exhibit a high	Will exhibit a	Will exhibit a basic	Will exhibit some	Will exhibit lack of
	physics knowledge	level of	good level of	level of competence	deficiencies in	competence in
	and theory to solve	competence in	competence in	in understanding,	understanding about	understanding,
	problems	understanding,	understanding,	explaining, and	experimental methods	explaining, and
	2. Demonstrate	explaining, and	explaining, and	integrating the	and the interpretation	integrating the
	correct	integrating the	integrating the	knowledge in	of results	knowledge in written
	understanding of	knowledge in	knowledge in	written format		format
	key concepts and	written format	written format			
	physics theory.					

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

(An indication of the key topics of the course.)

Method of Statistical Mechanics: grand canonical ensemble, Bose and Fermi distributions, phases and partition functions.

Weakly Interacting Systems: non-ideal gas and the Virial expansion, van der Waals gas, mean field theory for magnetic systems.

Strongly Interacting Systems: phase transitions, critical phenomena, Ising model, Landau theory, ferroelectrics.

Dissipative Systems: Fluctuation-dissipation theorem, Langevin equation, correlations.

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

None.

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

1.	Brian Cowan, Topics in Statistical Mechanics (Imperial College Press, 2005)
2.	R. K. Pathria and Paul D. Beale, Statistical Mechanics 3rd ed (Academic Press, 2011)
3.	Richard P. Feynman, Statistical Mechanics: A Set of Lectures (CRC Press, 1998)
4.	Kerson Huang, Statistical Mechanics (Wiley, 2008)