City University of Hong Kong Course Syllabus

offered by Department of Physics with effect from Semester A 2020/21

Part I Course Overview

Course Title:	Advanced Quantum Mechanics				
Course Code:	PHY6251				
Course Duration:	1 semester				
Course Duration.					
Credit Units:	3 credits				
creat onts.	Scredits				
T 1	Dr.				
Level:	<u>P6</u>				
Medium of					
Instruction:	English				
Medium of					
Assessment:	English				
Prerequisites:					
(Course Code and Title)	Nil				
Precursors:	AP1203/PHY1203 General Physics III or equivalent				
(Course Code and Title)	AP3251/PHY3251 Quantum Physics or equivalent				
Equivalant Courses					
Equivalent Courses : <i>(Course Code and Title)</i>	Nil				
Exclusive Courses : <i>(Course Code and Title)</i>	PHY8251 Advanced Quantum Mechanics				
(Course Coue unu Ille)	11110201 Hayanood Quantum Moonanies				

Part II Course Details

1. Abstract

This course aims to equip graduate students with advanced knowledges of quantum mechanics that are necessary to conduct research and understand literature. The course will start with the Schrödinger, Heisenberg and the interaction picture, then covers the perturbation theory and scattering theory, the fundamental theories dealing with interacting problems. After that students will learn about identical particles, spins and second quantization. At last, there will be an introduction on applications of quantum mechanics to modern many-body physics.

2. Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs	Weighting	Discov	very-en	riched	
		(if	curricu	lum re	lated	
		applicable)	learnin	g outco	omes	
			(please	tick	where	
			approp	appropriate)		
			Al	A2	A3	
1.	Recognize and use appropriately important technical terms		✓			
	and definitions					
2.	Use appropriate mathematical notations and apply in		✓	✓		
	concise form the laws of quantum mechanics to the study					
	of modern physics problems					
3.	Apply the laws of quantum mechanics to the study of		\checkmark	\checkmark	\checkmark	
	modern physics problems					
4.	Solve real and hypothetical problems in quantum physics		\checkmark	\checkmark	\checkmark	
	by identifying the underlying physics and analysing the					
	problem					
		100%				

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs)

(TLAs designed to facilitate students' achievement of the CILOs.)

TLA	Brief Description		O No.		Hours/week	
		1	2	3	4	(if applicable)
Lecture	Explain key concepts and theory of topics of the course	~	~	~		2 hrs/wk
Tutorial	Explain how some problems are solved and the techniques used explain some concepts	✓	~	~	~	1 hr/wk

4. Assessment Tasks/Activities (ATs) (ATs are designed to assess how well the students achieve the CILOs.)

Assessment Tasks/Activities	CILO No.				Weighting	Remarks
		2	3	4		
Continuous Assessment: 60%						
Homework, Quizzes etc.	\checkmark	✓	\checkmark	~	60%	
Examination: 40%	✓	~	✓	✓	40%	
(duration: 2 hours)						
					100%	

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
1. Assignment	1. Capacity for using	Will exhibit a high	Will exhibit a	Will exhibit a basic	Will exhibit some	Will exhibit lack of
	physics knowledge	level of	good level of	level of competence	deficiencies in	competence in
	and theory to solve	competence in	competence in	in understanding,	understanding,	understanding,
	problems	understanding,	understanding,	explaining, and	explaining, and	explaining, and
	2. Demonstrate	explaining, and	explaining, and	integrating the	integrating the	integrating the
	correct	integrating the	integrating the	knowledge in	knowledge in written	knowledge in written
	understanding of	knowledge in	knowledge in	written format	format	format
	key concepts.	written format	written format			
2. Examination	1. Capacity for using	Will exhibit a high	Will exhibit a	Will exhibit a basic	Will exhibit some	Will exhibit lack of
	physics knowledge	level of	good level of	level of competence	deficiencies in	competence in
	and theory to solve	competence in	competence in	in understanding,	understanding about	understanding,
	problems	understanding,	understanding,	explaining, and	experimental methods	explaining, and
	2. Demonstrate	explaining, and	explaining, and	integrating the	and the interpretation	integrating the
	correct	integrating the	integrating the	knowledge in	of results	knowledge in written
	understanding of	knowledge in	knowledge in	written format		format
	key concepts and	written format	written format			
	physics theory.					

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

(An indication of the key topics of the course.) Theory of Angular Momentum Symmetry in Quantum Mechanics Basic Group Theory Schrödinger, Heisenberg and the interaction picture Perturbation theory

Identical particles and spins Second quantization Introduction to modern many-body physics

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

None.

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

1.	J. J. Sakurai, Modern Quantum Mechanics (Second Edition) (Cambridge University Press, 2017)
2.	R. Shankar, Principles of Quantum Mechanics (Plenum Press, 2011)
3.	David J. Griffiths, Introduction to Quantum Mechanics, (Cambridge University Press, 2018)
4.	Gerald D. Mahan, Many-Particle Physics (Physics of Solids and Liquids) 3rd ed. (Springer, 2000)
5.	Franz Schwabl (translated by R. Hilton and Angela Lahee), Advanced Quantum Mechanics 4th ed. (Springer, 2008)