City University of Hong Kong Course Syllabus

offered by Department of Biomedical Sciences with effect from Semester A 2019/2020

Part I Course Overv	iew
Course Title:	Advanced Neuroscience
Course Code:	BMS8108
Course Duration:	One semester
Credit Units:	3
Credit Omis:	3
Level:	R8
Medium of Instruction:	English
Medium of	
Assessment:	English
Prerequisites:	
(Course Code and Title)	Nil
Precursors:	
(Course Code and Title)	Nil
Equivalent Courses:	
(Course Code and Title)	Nil
Exclusive Courses:	
(Course Code and Title)	Nil

Part II Course Details

1. Abstract

This course aims to provide a solid foundation in the field of neuroscience at cellular and organismal levels, and the concepts of integrative neurobiology. This is targeted for graduate students who are interested in professional fields in animal and human neurophysiology, research, and medicine or veterinary sciences. Students are encouraged to build broad and strong academic foundations.

- Neuroanatomy: structure and function of nervous system
- Cellular neurophysiology: synapses, and circuits
- Systems neuroscience: integration of molecular mechanisms, anatomical circuits, and behavioural analysis to understand function of neural systems
- Fundamental topics in biological neuroscience:
 - > Learning and memory
 - > Pain and pleasure
 - > Satiety and obesity

2. Course Intended Learning Outcomes (CILOs)

No.	CILOs	Weighting	Discovery- enriched curriculum related learning outcomes (please tick where appropriate)		
			A1	A2	<i>A3</i>
1.	Describe the anatomy of central and peripheral nervous system at cellular, histological and regional systems levels.	30%	√		
2.	Explain the action potential and membrane potentials, channels and channel blockers, synaptic receptors, transmitter release, and sensory transduction.	30%	✓	✓	
3.	General overview to discover how the brain generates learning and memory, what is consciousness and why do we have pain and pleasure.	40%	✓	✓	√
		100%		•	

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs)

TLA	Brief Description	CILO No.			Hours/week (if
		1	2	3	applicable)
Lecture,	To demonstrate neuronal anatomy.	./			39 hours in
tutorial	·	•			total
Lecture,	To review literature about electrical physiological				
tutorial	recordings. The students will report their		✓		
	findings.				
Lecture,	Internet resources and literature will be reviewed.				
tutorial,	Students will evaluate, discuss, and present their			✓	
presentation	findings.				

4. Assessment Tasks/Activities (ATs)

Assessment Tasks/Activities	CILO No.			Weighting	Remarks		
	1	2	3				
Continuous Assessment: 100%							
Participation: Attendance	✓	✓	✓	30%			
Coursework	✓	✓		30%			
Active Participation in Discussion	✓	✓	✓	40%			
Examination: 0%			•				

100%

5. Assessment Rubrics

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
Short Quizzes	Ability to show the	Outstanding	Substantial	Satisfactory	Barely satisfactory	Unsatisfactory
	learning progress	performance on all	performance on all	performance on the	performance on a	performance on a
	and express the	CILOs. Strong	CILOs. Evidence of	majority of CILOs	number of CILOs.	number of CILOs.
	knowledge	evidence of original	grasp of subject,	possibly with a few	Sufficient	Failure to meet
Tutorial Discussion	Participation in	thinking; good	some evidence of	weaknesses. Being	familiarity with the	specified
	class and discussion	organization,	critical capacity and	able to profit from	subject matter to	assessment
Oral Presentation	Ability to analyse	capacity to analyse	analytic ability;	the course	enable the student	requirements, little
	and express the	and synthesize;	reasonable	experience;	to progress without	evidence of
	synthesis of ideas or	superior grasp of	understanding of	understanding of	repeating the	familiarity with the
	test/report results in	subject matter;	issues; evidence of	the subject; ability	course.	subject matter;
	a clear and cogent	evidence of	familiarity with	to develop solutions		weakness in critical
	manner	extensive	literature.	to simple problems		and analytic skills;
		knowledge base.		in the material.		limited or irrelevant
						use of literature

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

- The basic structure features of nervous system
- Cellular neurophysiology: neurons, synapses, electrotonic properties, neurotransmitters, receptors, long-term potentiation
- Systems neuroscience: sensory, motor system, autonomic function and behavioural analysis
- Brain-generated learning and memory, pain perception

2. Reading List

2.1 Compulsory Readings

Nil

2.2 Additional Readings

Larry R. Squire, Darwin Berg, Floyd E. Bloom, Sascha du Lac, Anirvan Ghosh & Nicholas C. Spitzer (2012), Fundamental Neuroscience (4th edition) Academic Press USA