City University of Hong Kong Course Syllabus

offered by School of Energy and Environment with effect from Semester A 2017/18

Part I Course Overview

Course Title:	Experimental Techniques in Energy and Environment				
Course Code:	SEE6119				
Course Duration:	One semester				
Credit Units:	3				
ereur emis.					
Level:	P6				
Level.	<u>F0</u>				
Medium of					
Instruction:	English				
Medium of					
Assessment:	English				
Prerequisites:					
(Course Code and Title)	Nil				
Precursors:	SEE 6101 Energy Generation and Storage Systems				
(Course Code and Title)	SEE 6102 Energy Efficiency and Conservation Technologies				
Equivalent Courses:					
(Course Code and Title)	SEE8126 Experimental Techniques in Energy and Environment				
Exclusive Courses : <i>(Course Code and Title)</i>	Nil				

Part II Course Details

1. Abstract

The course aims to equip students with the experimental skills and further practical appreciation on the various energy and environmental technologies. Being an experimental-based course, the course will also impart essential skills in data collection, critical analysis of experimental data to good practice in report writing. Through this course, students will grow appreciation in bridging theoretical knowledge with experimental practice.

2. Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs	Weighting	Discov	ery-eni	riched
		(if	curricu		
		applicable)	learnin	g outco	omes
			(please	tick	where
			approp	riate)	
			A1	A2	A3
1.	Apply the theory of thermodynamics and heat transfer, to	25%		\checkmark	
	systems of energy efficiencies, for instance refrigeration				
	cycle and heat exchanger design; collect and analyse				
	relevant experimental data; apply good practice in report				
	writing.				
2.	Apply the theory of renewable energy conversion systems,	25%		\checkmark	
	such as photovoltaic solar cells, fuel cells and biofuel				
	conversion; collect and analyse relevant experimental data;				
	apply good practice in report writing.				
3.	Apply the theory of environmental abatement techniques in	25%		\checkmark	
	air and wastewater purification; collect and analyse				
	relevant experimental data; apply good practice in report				
	writing.				
4.	Apply good practice in verbal presentation of experimental	25%		\checkmark	
	findings.				
		100%			

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs)

(TLAs designed to facilitate students' achievement of the CILOs.)

TLA	Brief Description	CILO	CILO No.		Hours/week (if	
		1	2	3	4	applicable)
Lecture	Explain key concepts and principles behind each experimental module	~	~	~		0.5 hr/week
Lab-based experiment and oral presentation	Hands-on lab session to acquire and analyze data; present experimental findings	~	•	v	•	2.5 hr/week

4. Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

Assessment Tasks/Activities	CILC	CILO No.		Weighting	Remarks	
	1	2	3	4		
Continuous Assessment: 100%						
Lab report, lab quiz		✓	✓		85%	
Oral presentation				✓	15%	
Examination: 0% (duration: N/A , if applicable)						
					100%	

To pass a course, a student must do ALL of the following:

- 1) obtain at least 30% of the total marks allocated towards coursework (combination of assignments, pop quizzes, term paper, lab reports and/ or quiz, if applicable);
- 2) obtain at least 30% of the total marks allocated towards final examination (if applicable); and
- 3) meet the criteria listed in the section on Assessment Rubrics.

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
1. Lab report, lab	Ability to	High	Significant	Moderate	Basic	Not even reaching
quiz	understand the					marginal levels
	objectives of the					
	experiments, set up					
	the experiments,					
	acquire and analyze					
	data, and draw					
	conclusions based					
	on the findings					
2. Oral presentation	Ability to orally	High	Significant	Moderate	Basic	Not even reaching
	present the key					marginal levels
	information related					
	to the experiments					

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

(An indication of the key topics of the course.)

Energy efficiencies:

Refrigeration cycle Heat exchanger design

Renewable energy conversion:

Solar cells assembly and assessment Fuel cells assembly and assessment Waste to biofuel conversion

Environmental abatement

Advanced oxidation techniques in wastewater treatment Treatment of wastewater Automobile gas purification technologies

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

1.	Cengel, Y.A., Boles, M.A., Thermodynamics: An Engineering Approach, McGraw-Hill, 2006.
2.	Incropera, F.P., DeWitt, D.P., Bergman, T.L., Lavine, A.S., Fundamentals of heat and mass
	trasnfer, John Wiley & Sons, New York, 2011.
3.	Hagfeldt, A., Boschloo, G., Sun, L., Kloo, L., Pettersson, H., Dye-sensitized solar cells, Chem.
	Rev. 2010, 110, 6595.
4.	O'Hayre, R., Cha, SW., Colella, W., Prinz, F.B., Fuel Cell Fundamentals, John Wiley and
	Sons, New York, 2006.
5.	Tchobanoglous, G., Burton, F., David Stensel, H., Wastewater Engineering: Treatment and
	Reuse, Metcalf and Eddy, McGraw-Hill, 2002.
6.	Burch, R., Knowledge and know-how in emission control for mobile applications, Catal.
	RevSci. Eng., 2004, 46, 271.

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

Nil