City University of Hong Kong Course Syllabus

offered by School of Energy and Environment with effect from Semester A 2017/18

Part I Course Overview

Course Title:	Emerging Energy Technologies				
Course Code:	SEE6118				
Course Duration:	One semester				
Credit Units:	3				
Level:	Рб				
Medium of Instruction:	English				
Medium of Assessment:	English				
Prerequisites : (Course Code and Title)	Nil				
Precursors : (Course Code and Title)	Nil				
Equivalent Courses : (Course Code and Title)	SEE8125 Emerging Energy Technologies				
Exclusive Courses : (Course Code and Title)	Nil				

Part II Course Details

1. Abstract

The course aims to provide students with the fundamental knowledge on the emerging energy technologies. This includes technologies that are expected to be the next state-of-the-art in the near future, from innovative clean energy conversion to energy storage. The acquired knowledge shall equip students for the rapidly evolving energy frontiers, and serve as a common ground for potential innovations in these technologies.

2. Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs	Waighting	Discor	oru on	richad
110.		Weighting	Discov	lum re	
		(if			
		applicable)		g outco	
			·	e tick	where
			appropriate)		
			A1	A2	A3
1.	Describe basic principles in the conversion of fossil	20%	\checkmark	\checkmark	
	fuel (coal and natural gas) to ultraclean fuel, as well as				
	their importance in the future energy equation;				
	describe the process of carbon capture and storage and				
	its importance in the integration of fossil fuel				
	utilisation.				
		100/			
2.	Describe the various means of solar energy conversion	40%	\checkmark	\checkmark	\checkmark
	from first to third generation photovoltaic solar cells,				
	and photoelectrochemical conversion; describe the				
	working principles of different fuel cells, namely				
	hydrogen fuel cell, direct methanol fuel cell and solid				
	oxide fuel cell.				
2		400/			
3.	Describe the principles of energy storage through	40%	\checkmark	\checkmark	
	lithium ion batteries and supercapacitors, and their				
	advantages; describe the principles of hydrogen				
	storage such as metal hydrides and carbon nanotubes.				
	· · ·	100%			

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs)

(TLAs designed to facilitate students' achievement of the CILOs.)

TLA	Brief Description	CILO No.			Hours/week (if applicable)
		1	2	3	
Lecture	Regular lectures to enrich	\checkmark	\checkmark	\checkmark	
	students with the required science				
	fundamentals for the applications				
	of emerging technologies in				
	energy conversion and storage				
Tutorial	Mathematical-based in-class		✓	✓	
	exercise to consolidate the skills				
	of students in designing energy				
	systems based on emerging				
	technologies				
Lab-based	Hands-on task in constructing and		✓	✓	
experiment	assessing emerging energy				
	systems				
Presentation	General presentation to share		✓ _	✓	
	research findings with classmates				

4. Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

Assessment Tasks/Activities	CILO No.		0.	Weighting		Remarks
	1	2	3			
Continuous Assessment: 100%						
Assignment	\checkmark	✓	✓	80%		
Lab work and report		✓	✓	15%		
Oral presentation		✓	✓	5%		
Examination: 0% (duration: N/A , if applicable)						
					100%	

To pass a course, a student must do ALL of the following:

- 1) obtain at least 30% of the total marks allocated towards coursework (combination of assignments, pop quizzes, term paper, lab reports and/ or quiz, if applicable);
- 2) obtain at least 30% of the total marks allocated towards final examination (if applicable); and
- 3) meet the criteria listed in the section on Assessment Rubrics.

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Assessment Task	Criterion	Excellent (A+, A, A-)	Good (B+, B, B-)	Fair (C+, C, C-)	Marginal (D)	Failure (F)
1. Assignment	Ability to apply mathematical skills in designing energy storage and conversion systems based on emerging technologies	High	Significant	Moderate	Basic	Not even reaching marginal levels
2. Lab work and report	Ability to apply hands-on skills in constructing and assessing energy systems, and further report writing	High	Significant	Moderate	Basic	Not even reaching marginal levels
3. Oral presentation	Ability to convey research findings orally in a convincing and systematic manner	High	Significant	Moderate	Basic	Not even reaching marginal levels

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

(An indication of the key topics of the course.)

Ultraclean fossil fuel conversion:

Gas-to-liquid conversion Clean coal technologies Carbon capture and storage

Energy conversion:

First, second and third generation solar cells Photoelectrochemical conversion Hydrogen fuel cells, direct methanol fuel cells, solid oxide fuel cells

Energy storage:

Lithium-ion batteries Supercapacitor Hydrogen storage

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

1.	Raimondi, F., Scherer, G.G., Kötz, R., Wokaun, A. Nanoparticles in energy technology: Examples from electrochemistry and catalysis, <i>Angew. Chem. Int. Ed.</i> 2005 , <i>44</i> , 2190.
2.	Somorjai, G.A., Frei, H., Park, J.Y. Advancing the frontiers in nanocatalysis, biointerfaces and renewable energy conversion by innovations of surface techniques, <i>J. Am. Chem. Soc.</i> 2009 , <i>131</i> , 16589.
3.	Kamat, P.V. Meeting the clean energy demand. Nanostructure architectures for solar energy conversion, <i>J. Phys. Chem. C</i> , 2007 , <i>111</i> , 2834.
4.	Winter, M., Brodd, R.J. What are batteries, fuel cells, and supercapacitors? <i>Chem. Rev.</i> 2004 , <i>104</i> , 4245.

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

Nil