City University of Hong Kong Course Syllabus

offered by Department of Mathematics with effect from Semester A 2019/20

Part I Course Overv	iew
Course Title:	Advanced Methods for Scientific Computation
Course Code:	MA8014
Course Duration:	One Semester
Credit Units:	3
Level:	_R8
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites: (Course Code and Title)	Nil
Precursors: (Course Code and Title)	MA3514 Numerical Methods for Differential Equations or MA6612 Numerical Partial Differential Equations
Equivalent Courses : (Course Code and Title)	Nil
Exclusive Courses: (Course Code and Title)	Nil

1

Part II Course Details

1. Abstract

This course gives students the opportunity for further studies in numerical methods of scientific computation. It

- introduces numerical methods for solutions of partial differential equations;
- provides an overview of criteria for analysing properties of numerical solutions of boundary value problems.

2. Course Intended Learning Outcomes (CILOs)

No.	CILOs	Weighting	Discovery-enriched curriculum related learning outcomes (please tick where appropriate)			
			A1	A2	A3	
1.	Explain mathematical theory underlying numerical methods for solutions of partial differential equations	10%	√	√		
2.	Perform error and stability analysis to investigate applicability of numerical methods for solving partial differential equations	20%	✓	✓	√	
3.	Carry out finite difference and finite element methods to approximate solutions of initial-boundary value problems	20%	√	√	✓	
4.	Implement discretization methods, including spectral collocation, to stationary and time-dependent boundary value problems	30%		✓	✓	
5.	Apply numerical and computational methods to obtain and analyse solutions of boundary value problems arising in physical science and engineering	20%		✓	✓	
	· - · · · · · · · · · · · · · · · · · ·	100%		•		

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs)

TLA	Brief Description	CI	LO N	Vo.		Hours/week	
		1	2	3	4	5	(if applicable)
Lectures	Learning through teaching is primarily based on lectures	✓	✓	✓	✓	✓	3 hours/week
Assignments	Learning through take-home assignments helps students implement and analyse numerical methods for approximating solutions of boundary value problems	✓	✓	✓	✓		After-class
Project(s)	Learning through project(s) helps students obtain approximate solutions of physically-arising initial/boundary value problems with mathematical justification by principles and advanced numerical techniques					√	After-class

4. Assessment Tasks/Activities (ATs)

Assessment	CILO No.		Weighting	Remarks			
Tasks/Activities	1	2	3	4	5		
Continuous Assessment: <u>50</u> %							
Test	✓	✓	✓	✓		25-50%	Questions are designed for the first part of
							the course to see how well the students have
							learned criteria for analysing numerical
							methods of boundary value problems, as well
							as implementation of finite element, finite
							difference and collocation methods.
Hand-in	✓	✓	✓	✓	✓	0-25%	These are skills based assessment which
assignments							enables students to approximate solutions of
							boundary value problems by numerical
							methods and to analyse accuracy of solutions
							with the aid of computing softwares.
Project(s)					✓	0-25%	Students are assessed on their ability in
							implementing computational techniques to
							formulate physical/engineering applications
							as boundary value problems, as well as on
							the presentation of numerical results with
							analysis.
Examination:	✓	✓	✓	✓	✓	50%	Examination questions are designed to see
<u>50</u> % (duration: 3							how far students have achieved their
hours)							intended learning outcomes. Questions will
							primarily be skills and understanding based
							to assess the student's versatility in
							numerical methods of solving boundary
							value problems.
						100%	

5. Assessment Rubrics

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
1. Test	DEMONSTRATION	High	Significant	Moderate	Basic	Not even reaching
	of the understanding					marginal levels
	of the first part of the					
	course					
2. Hand-in	DEMONSTRATION	High	Significant	Moderate	Basic	Not even reaching
assignments	of the understanding					marginal levels
	of the basic materials					
3. Project (s)	DEMONSTRATION	High	Significant	Moderate	Basic	Not even reaching
	of the ability to					marginal levels
	implement required					
	computational					
	techniques and					
	present numerical					
	results with analysis					
4. Examination	DEMONSTRATION	High	Significant	Moderate	Basic	Not even reaching
	of skills and					marginal levels
	versatility in					
	numerical methods of					
	solving boundary					
	value problems					

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

Finite element, finite difference and collocation methods for stationary and time-dependent boundary value problems, error analysis and stability analysis, applications in science and engineering.

2. Reading List

2.1 Compulsory Readings

1.	
2.	
3.	

2.2 Additional Readings

1.	
2.	
3	
J.	