City University of Hong Kong Course Syllabus

offered by Department of Architecture and Civil Engineering with effect from Semester A 2017/18

Part I Course Overview

Course Title:	Indoor Air Quality
Course Code:	CA6237
Course Duration:	1 Semester (Some courses offered in Summer Term may start a few weeks earlier than the normal University schedule. Please check the teaching schedules with CLs before registering for the courses.)
Credit Units:	3
Level:	P6
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites: (Course Code and Title)	Nil
Precursors: (Course Code and Title)	Nil
Equivalent Courses: (Course Code and Title)	Nil
Exclusive Courses: (Course Code and Title)	Nil

Part II Course Details

1. Abstract

Application of principles describing the generation, separation, control and removal of air contaminants in buildings; description and application of chemical and physical principles related to air pollutants, aerosol mechanics, attenuation of light in the atmosphere, air quality regulation, generation of air pollutants.

2. Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs	Weighting (if applicable)	Discovery-enriched curriculum related learning outcomes (please tick where appropriate)		
			A1	A2	A3
1.	apply the methods to assess and evaluate air quality in buildings, IAQ exposure assessment;			√	√
2.	create suggestions to existing buildings for improving air quality;			√	√
3.	discover the indoor aerosols and bioaerosols, and the migration system;		√	√	
4.	criticize efficiency of removal of air contaminants in buildings.		√	√	√
		100%			

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs) (TLAs designed to facilitate students' achievement of the CILOs.)

TLA	Brief Description	CILO	No.	Hours /		
		1	2	3	4	week (if applicable)
Lectures	On topics related to indoor air quality	✓	✓	✓	√	
Tutorials	In class discussions and activities on problems related to lecture themes	✓	✓	✓	√	

Semester Hours:	3 hours per week
Lecture/Tutorial/Laboratory Mix:	Lecture (2); Tutorial (1); Laboratory (0)

4. Assessment Tasks/Activities

(ATs are designed to assess how well the students achieve the CILOs.)

Assessment Tasks / Activities	CILO No.		Weighting	Remarks				
	1	2	3	4				
Continuous Assessment: 50%								
Assignment	√	√	√	√	15%			
Project	√	√	√	✓	15%			
Mid-term Test	√	√	√	√	20%			
Examination: 50% (duration: 2 hours)								
					100%			

To pass a course, a student must obtain minimum marks of 30% in both coursework and examination components, and an overall mark of at least 40%

5. Assessment Rubrics (Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Assessment Task	Criterion	Excellent (A+, A, A-)	Good (B+, B, B-)	Fair (C+, C, C-)	Marginal (D)/ Pass (P) on P/F basis	Failure (F)
Assignment	ABILITY to APPLY theories and knowledge to topics related to indoor air quality	High	Significant	Moderate	Basic	Not even reaching marginal levels
Project	CAPACITY to EXPLORE, INVESTIGATE, and ORGANIZE knowledge and ideas in an independent fashion in topics pertaining to indoor air quality	High	Significant	Moderate	Basic	Not even reaching marginal levels
Mid-term Test	ABILITY to UNDERSTAND and APPLY theories and knowledge to topics related to indoor air quality	High	Significant	Moderate	Basic	Not even reaching marginal levels
Examination	ABILITY to UNDERSTAND and APPLY theories and knowledge to topics related to indoor air quality	High	Significant	Moderate	Basic	Not even reaching marginal levels

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

(An indication of the key topics of the course.)

Indoor air generation, separation and control; removal of air contaminants in buildings; description and application of chemical and physical principles related to air pollutants, aerosol mechanics, air quality regulation, generation of air pollutants.

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

1. Nil

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

- 1. Hess-Kosa, Kathleen. Indoor air quality: the latest sampling and analytical methods / Kathleen Hess-Kosa. Boca Raton, FL: CRC Press, c2011.
- 2. H.E. Burroughs, Shirley J. Hansen. Managing indoor air quality. Lilburn, GA: Fairmont Press; Boca Raton, FL: Distributed by CRC Press, c2011.
- 3. Ventilation for acceptable indoor air quality: ASHRAE standard. Atlanta, GA: American Society of Heating, Refrigerating and Air-Conditioning Engineers, c2007.