City University of Hong Kong Course Syllabus

offered by Department of Systems Engineering & Engineering Management with effect from Semester A 2017 / 18

Part I Course Over	rview
Course Title:	Data Mining and Statistical Modeling
Course Code:	SEEM8012
Course Duration:	One Semester
Credit Units:	3
Level:	R8 Arts and Humanities
Proposed Area: (for GE courses only)	Study of Societies, Social and Business Organisations Science and Technology
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites: (Course Code and Title)	Nil
Precursors: (Course Code and Title)	Basic Probability and Statistics
Equivalent Courses : (Course Code and Title)	MEEM8012 Data Mining and Statistical Modeling
Exclusive Courses: (Course Code and Title)	Nil

Part II **Course Details**

1. **Abstract**

This course focuses on data mining tools and techniques that are useful for a wide range of applications in manufacturing, service, logistics, health and medical, financial and banking, etc. We discuss four basic data mining operation steps: business objective identification, data preparation, knowledge discovery, and consolidation/implementation. We cover both supervised learning and unsupervised learning methods and algorithms, including regression, classification, forecasting, clustering, association rules, and market basket analysis etc. The methods will be illustrated with case studies in credit card fault detection, telecommunication, express mail service, inventory management, customer relationship management, and bioinformatics.

2. **Course Intended Learning Outcomes (CILOs)**

No.	CILOs#	Weighting*		ery-enr	
		(if	curricu	ılum rel	ated
		applicable)	learnin	g outco	mes
			(please	tick	where
			approp		
			A1	A2	A3
1.	Recognize basic statistical learning, data mining, machine	15%			
	learning, and knowledge discovery and potential		√		
	applications				
2.	Familiarize the operational steps on data mining and	15%	✓		
	knowledge discovery				
3.	Recognize and apply supervised learning methods and	20%	✓		
	algorithms and their applications.				
	and their approachers.	200/			
4.	Recognize and apply unsupervised learning methods and	20%	✓		
	algorithms and their applications.				
5.	Demonstrate how data mining methods and algorithms can	30%	✓	✓	
	be applied to real life problems in various applications				
* If	eighting is assigned to CILOs, they should add up to 100%.	1000/			
· ij w	eigning is assigned to CILOs, they should dad up to 100%.	100%			

^{*} If weighting is assigned to CILOs, they should add up to 100%.

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

[#] Please specify the alignment of CILOs to the Gateway Education Programme Intended Learning outcomes (PILOs) in Section A of Annex.

3. Teaching and Learning Activities (TLAs)

TLA	Brief Description	CILO No.				Hours/week (if	
		1	2	3	4	5	applicable)
Lecture	- large class activity	✓	✓	✓	✓	✓	39 hours/sem
	- questions and discussion						

4. Assessment Tasks/Activities (ATs)

Assessment Tasks/Activities	CILO No.				Weighting*	Remarks	
	1	2	3	4	5		
Continuous Assessment: 100	%						
Group Work	✓	✓	✓	✓	✓	40%	
Individual Coursework	✓	✓	✓	✓		25%	
Test		✓	✓	✓	✓	35%	
Examination: 0 % (duration: , if applicable)							

^{*} The weightings should add up to 100%.

5. Assessment Rubrics

Assessment Task	Criterion	Excellent (A+, A, A-)	Good (B+, B, B-)	Fair (C+, C, C-)	Marginal (D)	Failure (F)
1. Group Work	Application of class materials and teamwork	High	Significant	Moderate	Basic	Not even reaching marginal levels
2. Individual Coursework	Application of class materials	High	Significant	Moderate	Basic	Not even reaching marginal levels
3. Test	Understanding of class materials	High	Significant	Moderate	Basic	Not even reaching marginal levels

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

- Introduction to Data Mining
- Data Processing and Data Preparation
- Supervised Learning Methods
- Linear Methods for Prediction/Regression
- Linear Methods for Classification
- Model Assessment and Inferences
- Tree Models and Related Methods
- Neural Networks and SVM
- Forecasting and Time Series Modeling
- Unsupervised Learning Methods
- Clustering and Association Methods
- Data Mining Case Studies

2. Reading List

2.1 Compulsory Readings

1		The Elements of Statistical Learning by Hastie, Tibshirani, and Friedman, Springer
2	2.	Lecture note

2.2 Additional Readings

NIL