City University of Hong Kong Course Syllabus

offered by Department of Systems Engineering & Engineering Management with effect from Semester A 2017 / 18

Part I Course Over	view
Course Title:	Financial Engineering for Engineering Managers
Course Code:	SEEM6103
Course Duration:	One Semester
Credit Units:	3
Level:	P6
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites: (Course Code and Title)	Nil
Precursors: (Course Code and Title)	Basic statistics knowledge equivalent to that of typical undergraduate science/engineering students
Equivalent Courses : (Course Code and Title)	Nil
Exclusive Courses: (Course Code and Title)	Nil

Part II Course Details

1. Abstract

This course introduces the essential aspects of financial engineering to engineering management students. No prior background in finance is assumed. The topics of the course include: a brief review of basic probability and statistics; introduction to time series models; calculation of investment returns; portfolio theory; the Capital Asset Pricing model; option pricing; value-at-risk; and real options valuation. The students will learn to apply the financial engineering tools to aid managerial decision making and managing risk in engineering enterprises.

2. Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

enterprise. 2. Perform basic probarelevant to financial models such as AR,		(if applicable)	curricu learnin (pleaso approp	ulum re ng outco e tick	omes
relevant to financial models such as AR,	inancial engineering in an engineering	5%	✓		
series data.	bility and statistics calculations engineering. Apply basic time series MA, ARMA and ARIMA to fit time	20%	✓	✓	
the returns using the portfolio theory to d characteristics. App	s, gross returns, log returns. Describe random walk model. Apply basic lesign portfolio with given desired ly the Capital Asset Pricing model to al parameters, including the beta and of a portfolio.	20%	~	√	
1 1 2	tree model and the Black-Scholes e the price of a European option.	20%	✓	✓	
5. Estimate the value-a	tt-risk of a portfolio.	20%	✓	✓	
Asset Pricing model value-at-risk to aid i	engineering tools such as the Capital, the binomial tree model, and making managerial decisions and gineering enterprises.	15%	✓	√	√

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

Teaching and Learning Activities (TLAs) 3.

(TLAs designed to facilitate students' achievement of the CILOs.)

TLA	Brief Description		O No.		Hours/week (if			
		1	2	3	4	5	6	applicable)
Lecture	Formal lecture	✓	✓	✓	✓	✓	✓	26 hours/sem
Group Activities	A term project will be given to students. In the term project, students will either (i) conduct and present a further study on some of the topics discussed in	~	V	✓	~	√	•	13 hours/sem
	the course, based on the research literature, or (ii) apply the financial tools discussed in the course to practical problems in engineering enterprises.							

4. Assessment Tasks/Activities (ATs)
(ATs are designed to assess how well the students achieve the CILOs.)

Assessment Tasks/Activities CI			CILO No.				Weighting	Remarks
	1	2	3	4	5	6		
Continuous Assessment: 45 %								
Coursework	✓	✓	✓	✓	✓	✓	45%	
(Assignments and a Term Project/Presentation)								
Examination: <u>55</u> % (duration: 2 Hours , if applicable)								

100%

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
1. Examination	Based on submitted	High	Significant	Moderate	Basic	Not even reaching
	written work to					
	evaluate					marginal levels
	understanding of					
	subject matter,					
	evidence of					
	knowledge base,					
	capacity to analyse					
	and synthesize, and					
	evidence of original					
	and critical thinking.					
2. Coursework	Based on submitted	High	Significant	Moderate	Basic	Not even reaching
(Assignments and a	written work and					marginal levels
	oral presentation to					marginar revers
Term Project/	evaluate					
Presentation)	understanding of					
,	subject matter,					
	evidence of					
	knowledge base,					
	capacity to analyse					
	and synthesize, and					
	evidence of original					
	and critical thinking.					

For a student to pass the course, at least 30% of the maximum mark for the examination should be obtained.

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

(An indication of the key topics of the course.)

- Review of basic probability and statistics. Introduction to time series models.
- Calculation of investment returns. Random walk model of returns.
- Portfolio theory. The Capital Asset Pricing model.
- Option pricing with the binomial tree model and the Black-Scholes formula.
- Value-at-risk calculation.
- Managerial decision making and risk management in engineering enterprises using financial engineering tools.

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

1		Investments, 9th Edition, Z. Bodie, A. Kane and A. Marcus, McGraw-Hill.
_	• •	111 (USUM UNIO)

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

1.	Modeling Risk, 2 nd Edition, J. Mun, John Wiley & Sons.
2.	Investment Science, D. G. Luenberger, Oxford University Press.
3.	Analysis for Financial Management, 10th Edition, Robert C. Higgins, McGraw-Hill
4.	A Course in Financial Calculus, A. Etheridge, Cambridge University Press.
5.	Statistics and Finance: An Introduction, David Ruppert. Springer