City University of Hong Kong Course Syllabus

offered by School of Energy and Environment with effect from Semester A 2017/18

Part I Course Over	view					
Course Title:	Energy Generation and Storage Systems					
Course Code:	SEE8111					
Course Duration:	One semester					
Credit Units:	3					
Level:	R8					
Proposed Area: (for GE courses only)	☐ Arts and Humanities ☐ Study of Societies, Social and Business Organisations ☐ Science and Technology					
Medium of Instruction:	English					
Medium of Assessment:	English					
Prerequisites: (Course Code and Title)	Nil					
Precursors: (Course Code and Title)	Nil					
Equivalent Courses : (Course Code and Title)	SEE6101 Energy Generation and Storage Systems					
Exclusive Courses: (Course Code and Title)	Nil					

Part II Course Details

1. Abstract

This course is mainly related to energy supply and storage system that are commonly used in our society. Operation principles of basic energy generation and storage systems, their advantages, and major drawbacks will be taught in the course. Non-conventional energy and renewable energy will be introduced as means of sustainable development.

2. Course Intended Learning Outcomes (CILOs)

No.	CILOs#	Weighting*	Discov	ery-eni	riched
		(if	curricu	ılum rel	lated
		applicable)	learnin	g outco	omes
			(please	e tick	where
			appropriate)		
			A1	A2	A3
1.	Analyze the supply and demand of fuel in the world.	10		\checkmark	
2.	Describe the pros and cons of conventional energy sources	20	√	\checkmark	
3.	Describe and compare the operation principle and environmental impacts of a coal-fired power plant with a	20		√	
4.	nuclear power plant	40	ما		
4.	Identify the different sources of renewable energy and innovative technologies in harnessing energy from these renewable sources	40	V	V	
5.	Describe and compare different energy storage technologies	10		1	
4 TC	-i-l-ii	1000/	ĺ		

^{*} If weighting is assigned to CILOs, they should add up to 100%. 100%

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs)

TLA	Brief Description	CILO No.					Hours/week (if
		1	2	3	4	5	applicable)
Lecture	Explain key concepts, such as theories related to energy generation and storage	V	V	V	V	V	2.5 hrs/wk
Tutorial, class demo	Solidify students' concepts with practice	V	$\sqrt{}$	√	V	V	0.5 hr/wk

[#] Please specify the alignment of CILOs to the Gateway Education Programme Intended Learning outcomes (PILOs) in Section A of Annex.

4. Assessment Tasks/Activities (ATs)

Assessment Tasks/Activities	CILO No.					Weighting*	Remarks	
	1	2	3	4	5			
Continuous Assessment: 60 %								
In-class test		$\sqrt{}$	\checkmark			20%		
Assignment	V	$\sqrt{}$	V	V	V	40%		
Examination: 40 % (duration: 2 hours, if applicable)								

100%

Examination duration: 2 hrs

Percentage of coursework, examination, etc.: 60% by coursework; 40% by exam

To pass a course, a student must do ALL of the following:

- 1) obtain at least 30% of the total marks allocated towards coursework (combination of assignments, pop quizzes, term paper, lab reports and/ or quiz, if applicable);
- 2) obtain at least 30% of the total marks allocated towards final examination (if applicable); and
- 3) meet the criteria listed in the section on Grading of Student Achievement.

^{*} The weightings should add up to 100%.

5. Assessment Rubrics

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
1. In-class test	Ability to analyse and solve practical problems related to energy supply and power plant	High	Significant	Moderate	Basic	Not even reaching marginal levels
2. Assignment	Ability to analyse and solve questions related to energy generation and storage	High	Significant	Moderate	Basic	Not even reaching marginal levels
3. Final exam	Ability to analyse and solve practical problems related to energy generation and storage	High	Significant	Moderate	Basic	Not even reaching marginal levels

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

Fuel availability; fossil fuels; conventional and non-conventional energy systems; biomass; combustion; steam cycle; pulverized coal fired power plant, nuclear power plant; generator; emission control; principles of renewable energy such as solar, wind, hydro, tidal and wave; energy storage systems.

2. Reading List

2.1 Compulsory Readings

1. Energy Science, Principles, Technologies, and Impacts, John Andrews and Nick Jelley, Oxford University Press, 2nd edition, 2013,

2.2 Additional Readings