City University of Hong Kong Course Syllabus

offered by Department of Mathematics with effect from Semester A 2017/18

Part I Course Overview

Course Title:	Advanced Methods for Scientific Computation
Course Code:	MA8014
Course Duration:	One Semester
Credit Units:	3
Level:	R8
Proposed Area: (for GE courses only)	Study of Societies, Social and Business Organisations Science and Technology
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites : (Course Code and Title)	Nil
Precursors : (Course Code and Title)	MA3513 Elementary Numerical Methods, MA3514 Numerical Methods for Differential Equations, MA6612 Numerical Partial Differential Equations or MA6624 Numerical Analysis
Equivalent Courses : (Course Code and Title)	Nil
Exclusive Courses : (Course Code and Title)	Nil

Part II Course Details

1. Abstract

This course gives students the opportunity for further studies in numerical methods of scientific computation. It

- introduces numerical methods for solutions of partial differential equations;
- provides an overview of criteria for analysing properties of numerical solutions of boundary value problems.

2. Course Intended Learning Outcomes (CILOs)

No.	CILOs [#]	Weighting*	Discov	very-eni	riched		
		(if	curricu	ılum rel	lated		
		applicable)	learnin	ig outco	omes		
			(please	e tick	where		
			approp	appropriate)			
			A1	A2	A3		
1.	Explain mathematical theory underlying numerical methods for solutions of partial differential equations	10%	~	\checkmark			
2.	Perform error and stability analysis to investigate applicability of numerical methods for solving partial differential equations	20%	~	~	~		
3.	Carry out finite difference and finite element methods to approximate solutions of initial-boundary value problems	20%	\checkmark	\checkmark	~		
4.	Implement discretization methods, including spectral collocation, to stationary and time-dependent boundary value problems	30%		~	~		
5.	Apply numerical and computational methods to obtain and analyse solutions of boundary value problems arising in physical science and engineering	20%		~	~		
* 16	aighting is assigned to CHOs, they should add up to 100%	1000/					

* If weighting is assigned to CILOs, they should add up to 100%. 100%

[#] Please specify the alignment of CILOs to the Gateway Education Programme Intended Learning outcomes (PILOs) in Section A of Annex.

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs)

TLA	Brief Description	CI	LON	No.		Hours/week	
		1	2	3	4	5	(if applicable)
Lectures	Learning through teaching is primarily based on	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	3 hours/week
	lectures						
Assignments	Learning through take-home assignments helps	\checkmark	\checkmark	\checkmark	\checkmark		After-class
	students implement and analyse numerical						
	methods for approximating solutions of boundary						
	value problems						
Project(s)	Learning through project(s) helps students obtain					\checkmark	After-class
	approximate solutions of physically-arising						
	initial/boundary value problems with						
	mathematical justification by principles and						
	advanced numerical techniques						

4. Assessment Tasks/Activities (ATs)

Assessment			Weighting*	Remarks			
Tasks/Activities	1	2	3	4	5		
Continuous Assessr	nent	: <u>50</u> 9	%				
Test	 ✓ 	~	~	~		25-50%	Questions are designed for the first part of the course to see how well the students have learned criteria for analysing numerical methods of boundary value problems, as well as implementation of finite element, finite difference and collocation methods.
Hand-in assignments	~	~	~	~	~	0-25%	These are skills based assessment which enables students to approximate solutions of boundary value problems by numerical methods and to analyse accuracy of solutions with the aid of computing softwares.
Project(s)					~	0-25%	Students are assessed on their ability in implementing computational techniques to formulate physical/engineering applications as boundary value problems, as well as on the presentation of numerical results with analysis.
Examination: <u>50</u> % (duration: 3 hours)	~	~	~	~	~	50%	Examination questions are designed to see how far students have achieved their intended learning outcomes. Questions will primarily be skills and understanding based to assess the student's versatility in numerical methods of solving boundary value problems.
* The weightings show	uld a	dd up	o to 1	00%		100%	

5. Assessment Rubrics

Assessment Task	Criterion	Excellent (A+, A, A-)	Good (B+, B, B-)	Fair (C+, C, C-)	Marginal (D)	Failure (F)
1. Test	DEMONSTRATION of the understanding of the first part of the course	High	Significant	Moderate	Basic	Not even reaching marginal levels
2. Hand-in assignments	DEMONSTRATION of the understanding of the basic materials	High	Significant	Moderate	Basic	Not even reaching marginal levels
3. Project (s)	DEMONSTRATION of the ability to implement required computational techniques and present numerical results with analysis	High	Significant	Moderate	Basic	Not even reaching marginal levels
4. Examination	DEMONSTRATION of skills and versatility in numerical methods of solving boundary value problems	High	Significant	Moderate	Basic	Not even reaching marginal levels

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

Finite element, finite difference and collocation methods for stationary and time-dependent boundary value problems, error analysis and stability analysis, applications in science and engineering.

2. Reading List

2.1 Compulsory Readings

1.	
2.	
3.	

2.2 Additional Readings

1.	
2.	
3.	