City University of Hong Kong Course Syllabus

offered by Department of Computer Science with effect from Semester A 2017/18

Part I Course Over	view
Course Title:	Comprehensive Studies in Selected Topics in Computer Science
Course Code:	_CS8692
Course Duration:	One semester
Credit Units:	3 credits
Level:	R8 Arts and Humanities
Proposed Area: (for GE courses only)	Study of Societies, Social and Business Organisations Science and Technology
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites: (Course Code and Title)	Nil
Precursors: (Course Code and Title)	Nil
Equivalent Courses : (Course Code and Title)	Nil
Exclusive Courses: (Course Code and Title)	Nil

Course Details Part II

1. **Abstract**

The aim of this course is to provide an opportunity for a postgraduate research student to explore a selected topic in computer science. The objectives are to develop in-depth knowledge of a chosen field of interest. The students will also have the opportunity to develop documentation and presentation skill in conveying the results of his/her work.

2. **Course Intended Learning Outcomes (CILOs)**

No.	CILOs#	Weighting* (if applicable)	Discovery-enriched curriculum related learning outcomes (please tick where appropriate)		
			Al	A2	<i>A3</i>
1.	To develop documentation and presentation skill in conveying the results of his/her work.			✓	
2.	To develop in-depth knowledge of a chosen field of interest.		✓		
3.	To explore, investigate, make critique and to derive possible new solutions on a specific topic in computer science.			√	
* If we	eighting is assigned to CILOs, they should add up to 100%.	100%			. "

^{*} If weighting is assigned to CILOs, they should add up to 100%.

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

[#] Please specify the alignment of CILOs to the Gateway Education Programme Intended Learning outcomes (PILOs) in Section A of Annex.

3. Teaching and Learning Activities (TLAs)

Teaching pattern:

Suggested lecture/tutorial/laboratory mix: individual consultation

TLA	Brief Description	С	ILO I	No.	Hours/week (if applicable)
		1	2	3	
Individual consultation	Students will conduct a weekly in-depth individual discussion with their supervisors. Through these consultations, supervisors will provide suggestions and comments on the works of the students.			✓	
Presentation	Each student will give a presentation of the main project findings to members of his/her qualifying panel members.	✓			
Identification of research problem and development of solution.	Each student will perform an in-depth study of a specific research problem, and to develop an effective solution to the problem. The main findings are to be documented in the form of an interim and a final report.	√	√	√	

4. Assessment Tasks/Activities (ATs)

Assessment Tasks/Activities	CILO No.			Weighting*	Remarks
	1	2	3		
Continuous Assessment: <u>100</u> %					
Research problem	✓	✓	✓	50%	
identification and solution					
development					
Presentation to qualifying	✓			10%	
panel					
Written report	✓	✓		20%	
Weekly in-depth discussions			\checkmark	20%	
Examination: <u>0</u> %					

^{*} The weightings should add up to 100%. 100%

5. Assessment Rubrics

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
Identification of research problem and development of solution	Capacity for developing an in-depth knowledge of a chosen research field in computer science. Capability to identify and address a specific research	High	Significant	Moderate	Basic	Not even reaching marginal levels
	address a specific research problem, and to formulate effective solutions for the problem.					
2. Presentation	Ability to deliver a presentation which summarizes the research problem under study. Capability to effectively address the questions raised by members of the qualifying panel.	High	Significant	Moderate	Basic	Not even reaching marginal levels
3. Report	Capacity for presenting the main research findings in the form of a report. Capability to identify the merits and limitations of current research approaches, and propose possible new solutions to the research problem under study.	High	Significant	Moderate	Basic	Not even reaching marginal levels
4.Weekly discussion	Ability to attain the major project milestones in a timely manner.	High	Significant	Moderate	Basic	Not even reaching marginal levels

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

Typical topics include: Computer Networks, Operating Systems, Distributed Systems, Software Engineering, Data Engineering, Formal Specification Techniques, Performance Evaluation, Artificial Intelligence, Algorithms, Programming Languages, Computer Graphics, Multimedia, Image Computing.

2. 2.1	Reading List Compulsory Readings					
	N/A					
2.2	Additional Readings					
	N/A					