City University of Hong Kong Course Syllabus

offered by College/School/Department of Management Sciences with effect from Semester A 2017 /18

Part I Course Over	view
Course Title:	Foundations of Management Science
Course Code:	MS8953
Course Duration:	One Semester
Credit Units:	3
Level:	R8
Proposed Area: (for GE courses only)	☐ Arts and Humanities ☐ Study of Societies, Social and Business Organisations ☐ Science and Technology
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites: (Course Code and Title)	Nil
Precursors: (Course Code and Title)	Nil
Equivalent Courses : (Course Code and Title)	Nil
Exclusive Courses: (Course Code and Title)	Nil

Part II **Course Details**

1. **Abstract**

(A 150-word description about the course)

Provide students a comprehensive understanding of linear programming, convex optimization, dynamic programming and stochastic control. Decision making under deterministic and stochastic environments. Applications in inventory control and pricing strategy. This course is designed to introduce fundamental models and technical tools of solving real world problems to PhD students, and to train their original thinking skills and prepare them for advanced research.

Course Intended Learning Outcomes (CILOs) 2.

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs#	Weighting* (if applicable)	Discov curricu learnin	lum rel	ated
			(please approp		where
			<i>A1</i>	A2	<i>A3</i>
1.	Formulate problems with linear, convex and dynamic programming models	20%		✓	
2.	Understand the fundamental models of inventory and pricing theory	20%		✓	
3.	Apply the models/theories in practice/research topics	20%		✓	
4.	Able to solve the basic optimization models and analyse the optimal policy of multi-period problem	30%		✓	
5.	Able to create new research ideas.	10%			✓
* If we	eighting is assigned to CILOs, they should add up to 100%.	100%			

^{*} If weighting is assigned to CILOs, they should add up to 100%.

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs)

(TLAs designed to facilitate students' achievement of the CILOs.)

TLA	Brief Description	CILO No.						Hours/week (if
		1	2	3	4	5		applicable)
Interactive lecture	During lectures, models and theories of optimization models are explained, and topics will be provided for students for group discussion.	√	√	√	✓			
Outside	Important recent research papers will be recommended to read after					✓		
Classroom	will be recommended to read after							

[#] Please specify the alignment of CILOs to the Gateway Education Programme Intended Learning outcomes (PILOs) in Section A of Annex.

Activities	class. Students are required to				
	evaluate, criticize the research				
	paper and create new research				
	ideas in related topics.				

4. Assessment Tasks/Activities (ATs)

 $(ATs\ are\ designed\ to\ assess\ how\ well\ the\ students\ achieve\ the\ CILOs.)$

Assessment Tasks/Activities	CILO No.						Weighting*	Remarks
	1	2	3	4	5			
Continuous Assessment:709	%							
Assignments	✓	✓	✓	✓			40%	
Midterm Exam	✓	✓	✓	✓			30%	
Examination:30% (duration: 3 hours, if applicable)								
Examination	✓	✓	✓	✓			30%	
* The weightings should add up to 100%.						100%		

^{*} The weightings should add up to 100%.

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
1. Assignments	Assignment is	High	Significant	Moderate	Basic	Not even reaching
	designed to enhance					marginal level
	students'					
	understanding of the					
	model and skills of					
	applying					
	methodology learnt to					
	the related problems.					
2. Midterm Exam	Assess students'	High	Significant	Moderate	Basic	Not even reaching
	knowledge on the					marginal level
	concepts, techniques					
	and ideas learnt in the					
	first half of the					
	semester.					
3. Final Exam	Assess students'	High	Significant	Moderate	Basic	Not even reaching
	knowledge on subject					marginal level
	matter and					
	using the techniques					
	to solve the related					
	problems. To test					
	students' creative					
	ideas on related					
I	research topics.					

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

(An indication of the key topics of the course.)

- Linear Optimization: Formulation, geometry, optimality, simplex method, duality, sensitivity analysis, interior point method, complementary-slackness condition
- Convex Optimization: convexity, epigraph, conjugate function, Lagrangian dual, Newton's method, KKT condition, semi-definite programming
- Dynamic programming, Optimal Control, Newsvendor Problem, Newsvendor Problem with Price-effect, Finite Horizon Inventory Control, Integration of Inventory and Pricing

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

Nil

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

_	
1.	Dimitris Bertsimas and John N.Tsitsikilis: Introduction to Linear Optimization
2.	Boyd, Vandenberghe: Convex Optimization, Cambridge University Press, 2004
3.	D. Bertsekas. Dynamic Programming and Optimal Control. Vol 1. Third Edition. 2005
4.	D. Simchi-Levi. X.Chen and J. Bramel. The Logic of Logistics; Theory, Algorithms, and
	Applications for Logistics and Supply Chain Management. Second Edition. 2005