Course Syllabus

offered by College/School/Department of Management Sciences with effect from Semester A 2016 /17

Part I Course Overview

Course Title:	Stochastic Operations Research					
Course Code:	MS8945					
Course Duration:	One Semester					
Credit Units:	3					
Level:	<u></u>					
Proposed Area: Arts and Humanities (for GE courses only) Study of Societies, Social and Business Organisations						
Medium of Instruction:	English					
Medium of Assessment:	English					
Prerequisites : (Course Code and Title)	MS8944 Introduction to Probability Models					
Precursors : (Course Code and Title)	Nil					
Equivalent Courses : (Course Code and Title)	Nil					
Exclusive Courses : (Course Code and Title)	Nil					

Part II **Course Details**

1. Abstract

(A 150-word description about the course)

This course is designed for PhD students in the field of management sciences. It will introduce fundamental stochastic models used in the management science field, including decision making under stochastic environments. Sequential decision-making via dynamic programming. Applications in inventory control, pricing strategy and finance. Special emphasis on the effects of uncertainty in operational decision making and to the interplay between high-level financial objectives and low-level operational guidelines. This course is designed to introduce fundamental models and technical tools of solving these models to OR/OM PhD students.

Course Intended Learning Outcomes (CILOs) 2.

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of *performance.*)

No.	CILOs [#]	Weighting* (if applicable)	Discovery-enriched curriculum related learning outcomes (please tick where appropriate)		
			A1	A2	A3
1.	Understand the basic concepts of stochastic processes		1	1	
2.	Understand the modelling issues in operations research		1	1	
3.	Able to model and solve problems in the management			1	1
	science field				
* If we	righting is assigned to CILOs, they should add up to 100%.	100%			

Attitude *A1*:

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

Teaching and Learning Activities (TLAs) 3.

(TLAs designed to facilitate students' achievement of the CILOs.)

TLA	Brief Description	CILO No.			Hours/week (if
		1	2	3	applicable)
Interactive lectures	Topics will be covered during lectures	1	1	1	3 hours/week
Individual Assignments	6-7 individual assignments for the course	~	1	1	

Assessment Tasks/Activities (ATs) 4.

(ATs are designed to assess how well the students achieve the CILOs.)

Assessment Tasks/Activities	CILO No.		Weighting*	Remarks			
	1	2	3				
Continuous Assessment: <u>40</u> %							
Assignments	1	1	1				
Examination: <u>60</u> % (duration: 3 hours, if applicable)							
* The weightings should add up to 100%.		100%					

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Assessment Task	Criterion	Excellent (A+, A, A-)	Good (B+, B, B-)	Adequate (C+, C, C-)	Marginal (D)	Failure (F)
1. Assignments		Strong evidence of original thinking; good organization, capacity to analyse and synthesize; superior grasp of subject matter; evidence of extensive knowledge base.	Evidence of grasp of subject, some evidence of critical capacity and analytic ability; reasonable understanding of issues; evidence of familiarity with literature.	Student who is profiting from the university experience; understanding of the subject; ability to develop solutions to simple problems in the material.	Sufficient familiarity with the subject matter to enable the student to progress without repeating the course.	Little evidence of familiarity with the subject matter; weakness in critical and analytic skills; limited, or irrelevant use of literature.
2. Examination		Strong evidence of original thinking; good organization, capacity to analyse and synthesize; superior grasp of subject matter; evidence of extensive knowledge base.	Evidence of grasp of subject, some evidence of critical capacity and analytic ability; reasonable understanding of issues; evidence of familiarity with literature.	Student who is profiting from the university experience; understanding of the subject; ability to develop solutions to simple problems in the material.	Sufficient familiarity with the subject matter to enable the student to progress without repeating the course.	Little evidence of familiarity with the subject matter; weakness in critical and analytic skills; limited, or irrelevant use of literature.

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

(An indication of the key topics of the course.) Review of Probability Theory, Renewal Theory, Martingales, Random Walks, Brownian Motions, Optimal Stopping Problems and Dynamic Programming

2. Reading List

Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

1. Sheldon M. Ross. 1996. Stochastic Processes, Second Edition, John Wiley & Sons