City University of Hong Kong

Information on a Course offered by Department of Management Sciences with effect from Semester A in 2009 / 2010

Part I

Course Title: Linear and Discrete Optimization

Course Code: MS8941

Course Duration: One Semester

Credit Units: 3

Level: R8

Medium of Instruction: English

Prerequisites: Nil

Precursors: Nil

Equivalent Courses: Nil

Exclusive Courses: Nil

Part II

Course Aims

To introduce students to deterministic operations research models with a focus on applications and techniques of linear and discrete optimization.

Course Intended Learning Outcomes (CILOs)

Upon successful completion of this course, students should be able to:

No.	CILO		
1	Formulate linear and discrete optimization problems		
2	<i>Prove</i> basic results in optimization		
3	Solve optimization problems with a computer software		
4	<i>Identify</i> the appropriate method to use for a given problem		

Teaching and Learning Activities (TLAs)

(Indicative of likely activities and tasks designed to facilitate students' achievement of the CILOs. Final details will be provided to students in their first week of attendance in this course)

No.	TLA		
CILO	Interactive lecture		
1,2,4	Topics will be covered in an interactive lecture setting with students		
	being encouraged to ask and answer questions, clarify ideas and		
	perform work-along exercises.		
CILO	Tutorials		
1,2,3,4	Assignments and computational exercises will be provided for students		
	to strengthen their concepts. Students will present and discuss the		
	solutions during the class.		

Assessment Tasks/Activities

(Indicative of likely activities and tasks designed to assess how well the students achieve the CILOs. Final details will be provided to students in their first week of attendance in this course)

No.	Type of assessment tasks/activities	Weighting (if applicable)
CILO	Tutorial assignments	25%
1,2,3,4		
CILO	Mid-term test	25%
1,2,4		
CILO	Final examination (3 hours)	50%
1,2,4		

Grading of Student Achievement:

Tutorial assignments/ Mid-term test/ Final examination

Letter	Grade	Grade	
Grade	Point	Definitions	
A+	4.3	Excellent	Strong evidence of knowing how to apply
А	4.0		concepts and techniques to solve optimization
A-	3.7		problems.
B+	3.3	Good	Some evidence of knowing how to apply
В	3.0		concepts and techniques to solve optimization
B-	2.7		problems.
C+	2.3	Adequate	Little evidence of knowing how to apply
С	2.0		concepts and techniques to solve optimization
C-	1.7		problems
F	0.0	Failure	Very little evidence of knowing how to apply
			concepts and techniques to solve optimization
			problems.

Part III

Keyword Syllabus

- Linear optimization: Formulation, geometry, optimality, simplex method, duality, sensitivity analysis, large scale optimization, interior point method, network optimization
- Discrete optimization: Formulations, complexity, duality, valid inequalities, branch and bound, Lagrangian methods, approximation

Essential Reading

• Introduction to Linear Optimization by Dimitris Bertsimas and John N. Tsitsikilis.

Supplementary Reading

- Integer and Combinatorial Optimization by George Nemhauser and Laurence A Wolsey
- Theory of Linear and Integer Programming by Alexander Schrijver
- Applications of optimization with Xpress-MP by Christelle Gueret, Christina Prins, Marc Sevaux
- OPL Studio

Online Resources

• Online software: <u>http://www-neos.mcs.anl.gov/</u>