City University of Hong Kong Course Syllabus

offered by Department of Mathematics with effect from Semester A 2017/18

Part I Course Overview

Course Title:	Selected Topics in Applied Analysis							
Course Code:	MA8004							
Course Duration:	One Semester							
Credit Units:	3							
Level:	R8							
Proposed Area: (for GE courses only)	Study of Societies, Social and Business Organisations							
Medium of Instruction:	English							
Medium of Assessment:	English							
Prerequisites : (Course Code and Title)	Nil							
Precursors : (Course Code and Title)	Nil							
Equivalent Courses : (Course Code and Title)	Nil							
Exclusive Courses : (Course Code and Title)	Nil							

Part II Course Details

1. Abstract

This course aims to

- give research students a broad training on various analytic techniques in modern applied mathematics;
- develop students' ability in approaching more sophisticated mathematical problems with knowledge from applied analysis and applying them in their own research.

2. Course Intended Learning Outcomes (CILOs)

No.	CILOs#	Weighting* (if applicable)	Discov curricu learnin (please approp	ery-enr llum rel g outco tick riate)	riched ated omes where
			Al	A2	A3
1.	Explain at high level concepts from advanced complex analysis, including analyticity of functions and conformality of mappings	10%	\checkmark	\checkmark	
2.	State clearly function theoretic and structural properties of frequently used higher transcendental functions and special functions	20%	~	~	
3.	Analyze problems with layers by matched asymptotic expansions	20%	\checkmark	\checkmark	
4.	Analyze asymptotic behaviour of solutions of boundary value problems	20%	\checkmark	\checkmark	
5.	Construct perturbation expansions for solutions of algebraic equations	10%	\checkmark	\checkmark	\checkmark
6.	Obtain uniformly valid composite expansions for solutions of boundary value problems	20%		\checkmark	\checkmark

* If weighting is assigned to CILOs, they should add up to 100%. 100%

[#] Please specify the alignment of CILOs to the Gateway Education Programme Intended Learning outcomes (PILOs) in Section A of Annex.

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs)

TLA	Brief Description	CI	LON	No.	Hours/week			
		1	2	3	4	5	6	(if applicable)
Lectures	Learning through teaching is primarily based	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	3 hours/week
	on lectures							
Assignments	Learning though take-home assignments	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	After class
	helps students implement techniques of							
	applied analysis (e.g. asymptotic and							
	perturbation methods) to solve differential							
	and integral equations, and to characterize							
	analytic properties of solutions							

4. Assessment Tasks/Activities (ATs)

Assessment	CILO No.		Weighting*	Remarks				
Tasks/Activities	1	2	3	4	5	6		
Continuous Assessm	nent	: <u>50</u> %	6					
Test	~	~	~	~			25-50%	Questions are designed for the first part of the course to see how well students have learned techniques of advanced complex analysis, mathematical applications of special functions as well as asymptotic and perturbation methods.
Hand-in assignments	~	~	~	~	~	~	0-25%	These are skills based assessment to help students manipulate theory and techniques of applied analysis to solve differential and integral equations, and to study analytic properties of solutions.
Examination: <u>50</u> % (duration: 3 hours)	~	~	~	~	~	~	50%	Examination questions are designed to see how far students have achieved their intended learning outcome. Questions will primarily be skills and understanding based to assess the student's versatility in techniques of applied analysis.
* The weightings show	ıld ad	dd up	o to 1	00%.			100%	

5. Assessment Rubrics

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
1. Test	DEMONSTRATION	High	Significant	Moderate	Basic	Not even reaching
	of the understanding					marginal levels
	of the first part of the					
	course					
2. Hand in	DEMONSTRATION	High	Significant	Moderate	Basic	Not even reaching
assignments	of the understanding					marginal levels
	of the basic materials					
3. Examination	DEMONSTRATION	High	Significant	Moderate	Basic	Not even reaching
	of skills and					marginal levels
	versatility in applied					
	analysis					

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

Complex Analysis, ordinary differential equations, special functions, asymptotic methods, distribution theory, partial differential equations, waves, singular perturbations, stability, external problems.

2. Reading List

2.1 Compulsory Readings

1.	
2.	
3.	

2.2 Additional Readings

1.	
2.	
3.	