City University of Hong Kong Course Syllabus

offered by Department of Physics with effect from Semester B 2017 / 2018

Part I Course Overview

Course Title:	Energy Materials Design for the Current Century
Course Code:	AP8176
Course Duration:	One Semester
Credit Units:	3
Level:	R8
Proposed Area: (for GE courses only)	Arts and Humanities Study of Societies, Social and Business Organisations Science and Technology
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites : (Course Code and Title)	Nil
Precursors : (Course Code and Title)	Nil
Equivalent Courses : (Course Code and Title)	Nil
Exclusive Courses : (Course Code and Title)	AP6176 Energy Materials Design for the Current Century

Part II **Course Details**

1. Abstract

Energy has become a large societal issue due to the current reliance on non-renewable energy resources and their negative impact on the environment. A growing interest in clean and renewable energy resources makes researchers around the globe to discover new materials. This course aims to introduce materials that revolutionize the current world with various energy options. The materials that control the performance of various energy sources such as photovoltaic devices, fuel cells, thermo-electric devices, artificial photosynthesis and energy storage are explored.

2. **Course Intended Learning Outcomes (CILOs)**

No.	CILOs	Weighting* (if applicable)	Discov curricu learnin (please approp	lum rel g outco tick	ated omes
			A1	A2	A3
1.	Describe the material design and relate to photovoltaic device properties	20%		\checkmark	
2.	Analyse the material design and explain causes on fuel cell properties	20%			\checkmark
3.	Relate the material design with thermoelectric device properties	20%		V	
4.	Generate material design and application on photosynthesis	20%			
5.	Identify and reflect the material design on energy storage devices	20%			
* If we	eighting is assigned to CILOs, they should add up to 100%.	100%		•	

[#] Please specify the alignment of CILOs to the Gateway Education Programme Intended Learning outcomes (PILOs) in Section A of Annex.

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs)

TLA	Brief Description	CIL	CILO No.				Hours/week (if	
		1	2	3	4	5		applicable)
1	Lectures							11 weeks
2	Tutorials	\checkmark						5 weeks
3	Presentation	\checkmark		\checkmark				2 weeks

4. Assessment Tasks/Activities (ATs)

Assessment Tasks/Activities	CILO No.						Weighting*	Remarks	
	1 2 3 4 5								
Continuous Assessment: 50%									
Individual presentation							40%		
Assignments $\sqrt{\sqrt{\sqrt{1-10\%}}}$									
Examination: 50% (duration: 2 hours)									

* The weightings should add up to 100%.

100%

5. Assessment Rubrics

Assessment Task	Criterion	Excellent (A+, A, A-)	Good (B+, B, B-)	Fair (C+, C, C-)	Marginal (D)	Failure (F)
1. Individual presentation	Understanding and explaining fundamental problem. Ability to identify new materials to solve such problems. Ability to explain prospects to solve the problem occurred.	High	Significant	Moderate	Basic	Not reaching marginal level
2. Tutorials	Understanding the concepts of new energy materials, and their applications.	High	Significant	Moderate	Basic	Not reaching marginal level
3. Examination	Able to define material design for various energy harvesting devices	High	Significant	Moderate	Basic	Not reaching marginal level

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

Photovoltaic devices

- Photovoltaic materials (Materials properties that include light absorption, charge transport properties and stability)
- Electrochemical devices that involves ionic transport and their respective materials, e.g. dye sensitised solar cells

Fuel cells

- Basic device architecture and design on proton transport materials
- Design on Redox catalysts and co-catalysts
- Applications of fuel cells

Thermoelectric (TE) devices

- Phonon scattering, low thermal conductivity and high electrical conductivity TE materials
- TE materials design and Figure of merit

Photosynthesis

- Hydrogen Catalysts
- Water-oxidizing catalysts
- Photosensitizers
- Photocatalytic water splitting

Energy storage devices

- Super capacitors
- Batteries
- Smart grid

Reading List Compulsory Readings

1.	Next Generation Photovoltaics: High Efficiency Through Full Spectrum Utilization -						
	by A Marti, Antonio Luque, Institute of Physics (Great Britain), 2004						
2.	Organic Photovoltaics: Mechanism, Materials, and Devices						
	by Sam-Shajing Sun, Niyazi Serdar Sariciftci						
	Published by CRC Press, 2005						
3.	The Materials Science of Semiconductors						
	By Angus Rockett						
	Edition: illustrated						
	Published by Springer, 2007						

2.2 Additional Readings

ſ	1.	Journal:									
		Nature Materials,	Nature	Photonics,	Advanced	Materials,	American	Chemical	Society		
		Journals, American Institute of Physics Journals and Elsevier Journals.									