City University of Hong Kong Course Syllabus

offered by Department of Physics with effect from Semester B 2017/18

Part I Course Overview					
Course Title:	Corrosion and Surface Engineering				
Course Code:	AP6303				
Course Duration:	One semester				
Credit Units:	3				
Level:	P6				
Medium of Instruction:	English				
Medium of Assessment:	English				
Prerequisites: (Course Code and Title)	Nil				
Precursors: (Course Code and Title)	Nil				
Equivalent Courses: (Course Code and Title)	Nil				
Exclusive Courses: (Course Code and Title)	AP8170 Environmental Degradation AP8303 Corrosion and Surface Engineering				

Part II Course Details

1. Abstract

To provide fundamental and practical understanding of corrosion behavior of metallic materials and surface engineering.

2. Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs	Weighting	Discov	ery-enr	riched
		(if	curricu	ılum rel	ated
		applicable)	learnin	g outco	mes
			(please	tick	where
			appropriate)		
			A1	A2	A3
1.	Describe the basis of electrochemistry, passivation				
	and corrosion rates.				
2.	Contrast the basis of various forms of corrosion,			V	V
	breakdown of passivation and materials selection.			,	,
3.	Carry out standard corrosion test and interpret the test			V	
	data.				
	- T-11111		,	,	
4.	Innovatively apply the various surface engineering		√		
	techniques.				
· · · · · ·		100%		•	•

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs)

(TLAs designed to facilitate students' achievement of the CILOs.)

TLA	Brief Description		CILO No.					Hours/week (if
		1	2	3	4			applicable)
Lecture	Explain principles of							12 hrs
	electrochemistry and kinetics							
Lecture and	Mechanisms of various corrosion							10 hrs
tutorial	attacks, material selection							
Laboratory	Polarization test and corrosion rate							3 hrs
	measurements							
Lecture and	Discuss the proper use of coatings							9 hrs
group	for the protection of metals against							
discussion	corrosion							
								total: 39 hrs

4. Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

Assessment	CILO No.				Weighting	Remarks	
Tasks/Activities		1 2 3 4					
Continuous Assessment: 40 %							
Coursework assignments						20%	
Writing laboratory report and	\checkmark					20%	
analysis of experimental data							
Examination: 60% (duration: 2 hours)							

100%

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
1. Coursework assignments	Understanding fundamentals of electrochemistry, corrosion, materials selection and coatings for corrosion protection	High	Significant	Moderate	Basic	Not even reaching marginal levels
2.Laboratory report	Ability to perform experiment and analyse the data	High	Significant	Moderate	Basic	Not even reaching marginal levels
3.Final examination	Ability to explain and analyse various corrosion mechanisms and capability of selecting materials against corrosion	High	Significant	Moderate	Basic	Not even reaching marginal levels

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

- •Overview of electrode potential
- •Nernst equation, Pourbaix diagram
- Anodic and cathodic protection
- •Electrode kinetics, passivation, forms of corrosion
- •Materials selection
- •Plasma spraying
- •Laser alloying
- •Ion implantation

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

1		Corrosion Engineering, by Mars G Fontana, McGraw -Hill (1986)			
2	2.	Principles and Prevention of Corrosion, by Denny A Jones, MacMillan Publishing			
		Company (1996)			

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

Nil