City University of Hong Kong Course Syllabus

offered by Department of Physics with effect from Semester B 2017/18

Part I Course Overview					
Course Title:	Modern Scattering Methods in Materials Science				
Course Code:	AP6180				
Course Duration:	One semester				
Credit Units:	3				
Level:	P6				
Medium of Instruction:	English				
Medium of Assessment:	English				
Prerequisites: (Course Code and Title)	Nil				
Precursors: (Course Code and Title)	Nil				
Equivalent Courses: (Course Code and Title)	Nil				
Exclusive Courses: (Course Code and Title)	AP8180 Modern Scattering Methods in Materials Science				

Part II Course Details

1. Abstract

This course covers a range of experimental and applied-physics topics and methods in materials science that involve X-ray and neutron scattering in the laboratory and as well as at large-scale facilities like at synchrotrons, at research nuclear-reactors, or at spallation neutron-sources. Its central aims are: (1) to describe the fundamentals of scattering by condensed matter, (2) to introduce the different commonly employed scattering techniques available in the laboratory and at large-scale facilities, (3) to show the possible applications in discovering advanced materials and (4) to motivate the students for discovery and innovation in applying scattering techniques in materials science.

2. Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs	Weighting	Discov		
		(if	curricu		
		applicable)	learnin		
			(please		where
			approp	A2	<i>A3</i>
1.	Explain the importance of modern scattering		√ √		710
	techniques and their applications in material research.				
2.	Acquire the fundamental knowledge about different		√		
	scattering techniques with special emphasis on neutron				
	diffraction.				
3.	Clarify the similarities and differences between X-ray		1		
	and neutron scattering.				
4.	Recognize the fundamental theory of scattering and its			$\sqrt{}$	
	application to study the structures of different classes				
	of materials.				
5.	Apply the kinematical diffraction theory to materials			$\sqrt{}$	$\sqrt{}$
	science problems.				
6.	Master the basic knowledge of			$\sqrt{}$	$\sqrt{}$
	small-angle-X-ray-scattering (SAXS) and				
	small-angle-neutron-scattering (SANS) for				
	determining the large-scale structure of materials				
7.	Describe the basics of inelastic-neutron-scattering			$\sqrt{}$	
	(INS) and quasi-elastic-neutron-scattering (QENS) for				
	being able to study the dynamics of liquids and soft				
	materials				
8.	Observe specific case-studies for better understanding				$\sqrt{}$
	the practical application of 1 to 7				
		100%			

Course Syllabus Jun 2017

- A1: Attitude
 - Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.
- A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs)

(TLAs designed to facilitate students' achievement of the CILOs.)

TLA	Brief Description		LO N	o.		Hours/week (if				
		1	2	3	4	5	6	7	8	applicable)
Lectures	Explain the basic									2
	principles of modern									
	theories related to									
	diffraction, small-angle,									
	inelastic and quasi-elastic									
	scattering techniques									
Tutorials	Problem solving related to									1
	scattering									
Project	Analysis of neutron									1
	scattering data of									
	small-angle x-ray/neutron									
	scattering and/or									
	quasi-elastic neutron									
	scattering									

The "Lectures" will be in the form of 2-hrs lectures each week, while the "Tutorials" and/or the "Laboratory demonstrations" will always follow the lectures.

4. Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

Assessment Tasks/Activities			CII	CILO No.				Weighting	Remarks	
	1	2	3	4	5	6	7	8		
Continuous Assessment: 60%	6									
Assignments	$\sqrt{}$			$\sqrt{}$	$\sqrt{}$		$\sqrt{}$		10	
Project									20	
Midterm Test	$\sqrt{}$		30							
Examination: 40% (duration: 2 hours)										

100%

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Assessment Task	Criterion	Excellent (A+, A, A-)	Good (B+, B, B-)	Fair (C+, C, C-)	Marginal (D)	Failure (F)
1. Assignments	Explain key concepts of modern scattering methods	High	Significant	Moderate	Basic	Not even marginal level
2. Project	Basic understanding of data analysis of SAXS/SANS and/or QENS	High	Significant	Moderate	Basic	Not even marginal level
3. Midterm Test	Ability to explain concepts of different scattering methods	High	Significant	Moderate	Basic	Not even marginal level
4. Final examination	Ability to explain key concepts of diffraction, SAXS, SANS, INS and QENS scattering methods	High	Significant	Moderate	Basic	Not even marginal level

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

Introduction

Basics of the structure of condensed materials: From atoms to the structures of crystalline, liquid and amorphous substances with showing materials of specific interest in modern life

- Fundamentals of scattering techniques: neutron diffraction, X-rays diffraction, scattering mechanisms, similarities and differences in X-ray and neutron scattering
- Fundamentals of the kinematical scattering theory, correlation between real and reciprocal space and its relevance to understand the structure of materials
- Small-angle-X-ray-scattering (SAXS) and small-angle-neutron-scattering (SANS), scattering by non-crystalline materials
- Inelastic-neutron-scattering (INS) and Quasi-elastic-neutron-scattering (QENS), atomic and molecular motion and magnetic and crystal field excitations
- Specific case-studies, atomic/molecular motion in liquids, the structure of bulk metallic glasses, magnetic shape-memory alloys, the dislocation density to strengthen metallic materials, internal stress measurements in engineering materials, interaction of water with biomolecules, etc.

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

1.	B. E. Warren, X-ray diffraction, Dover Books on Physics, 1964
2.	G. L. Squires, Introduction to the Theory of Thermal Neutron Scattering, Cambridge
	University Press, 1978

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

1.	L. H. Schwartz & J. B. Cohen, Diffraction from materials, Academic Press, 1977
2.	G. E. Bacon, Neutron diffraction, Clarendon Press, 1975
3.	Ilias Michalarias & Dr. Jichen Li, Neutron Scattering Experiments of Water in
	Biomolecules, University of Manchester, 2005
4.	F. H. Chung & D. K. Smith Eds. Industrial Applications of X-ray Diffraction, Marcel
	Dekker, Inc. USA, 2000
5.	M. Bee, Quasielastic Neutron Scattering, Principles and Applications in Solid State
	Chemistry, Biology and Materials Science, Taylor & Francis; 1 edition (January 1,
	1988)
6.	Stewart F. Parker, Inelastic Neutron Scattering Spectroscopy, Wiley, 2006.
7.	T. Egami and S. J. L. Billinge, "Underneath the Bragg Peaks, Structure Analysis of
	Complex Materials," Elsevier, 2003.
8.	Linan Tian, A Kolesnikov and Jichen Li. Ab Initio Simulation of Hydrogen Bonding in
	Ices under Ultra-High Pressure. J. Chem. Physics. 2012

9.	D. Ma, A. D. Stoica, XL. Wang, Z. P. Lu, B. Clausen, D. W. Brown, "Moduli
	inheritance and the weakest link in metallic glasses," Phys. Rev. Lett., 108, 085501
	(2012)
10.	S. Cheng, A.D. Stoica, XL. Wang, Y. Ren, J. Almer, J.A. Horton, C.T. Liu, B.
	Clausen, D.W. Brown, P.K. Liaw, and L. Zuo, "Deformation cross-over: from nano to
	meso scales," Physical Review Letters 103, 035502 (2009)
11.	P. Cordier, T. Ungar, L. Zsoldos, G. Tichy, Dislocation creep in MgSiO ₃ perovskite at
	conditions of the Earth's uppermost lower mantle, Nature, 428 (2004) 837
12.	S. M. Chathoth, E. Mamontov, Y. B. Melnichenko and M. Zamponi, Diffusion and
	adsorption of methane confined in nano-porous carbon aerogel: a combined
	quasi-elastic and small-angle neutron scattering study, Mesoporous and Microporous
	Materials, 132, 148 (2010)