City University of Hong Kong Course Syllabus

offered by Department of Physics with effect from Semester B 2017 / 2018

Part I Course Overview

Course Title:	Energy Materials Design for the Current Century
Course Code:	AP6176
Course Duration:	One Semester
Credit Units:	3
Level:	P6
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites : (Course Code and Title)	Nil
Precursors: (Course Code and Title)	Nil
Equivalent Courses : (Course Code and Title)	Nil
Exclusive Courses : (Course Code and Title)	AP8176 Energy Materials Design for the Current Century

Part II Course Details

1. Abstract

Energy has become a large societal issue due to the current reliance on non-renewable energy resources and their negative impact on the environment. A growing interest in clean and renewable energy resources makes researchers around the globe to discover new materials. This course aims to introduce materials that revolutionize the current world with various energy options. The materials that control the performance of various energy sources such as photovoltaic devices, fuel cells, thermo-electric devices, artificial photosynthesis and energy storage are explored.

2. Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs	Weighting	Discov	very-en	riched
		(11	curricu	lum re	lated
		applicable)	learnin	g outco	omes
			(please	e tick	where
			approp	riate)	
			A1	A2	A3
1.	Describe the material design and relate to photovoltaic	20%			
	device properties				
2.	Analyse the material design and explain causes on fuel cell	20%			
	properties				
3.	Relate the material design with thermoelectric device	20%			
	properties				
4.	Generate material design and application on photosynthesis	20%			
5.	Identify and reflect the material design on energy storage	20%			
	devices				
		100%			

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3.

Teaching and Learning Activities (TLAs) (*TLAs designed to facilitate students' achievement of the CILOs.*)

TLA	Brief Description	CILO No.					Hours/week (if	
		1	2	3	4	5		applicable)
1	Lectures							11 weeks
2	Tutorials							5 weeks
3	Presentation					\checkmark		2 weeks

4. Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

Assessment Tasks/Activities	CILO No.						Weighting	Remarks	
	1	2	3	4	5				
Continuous Assessment: 50%									
Individual presentation			\checkmark				40%		
Assignments							10%		
Examination: 50% (duration: 2 hours)									
	100%								

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
1. Individual	Understanding and	High	Significant	Moderate	Basic	Not reaching marginal
presentation	explaining					level
_	fundamental problem.					
	Ability to identify					
	new materials to					
	solve such problems.					
	Ability to explain					
	prospects to solve the					
	problem occurred.					
2. Tutorials	Understanding the	High	Significant	Moderate	Basic	Not reaching marginal
	concepts of new	-	-			level
	energy materials, and					
	their applications.					
3. Examination	Able to define	High	Significant	Moderate	Basic	Not reaching marginal
	material design for	-	-			level
	various energy					
	harvesting devices					

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

(An indication of the key topics of the course.)

Photovoltaic devices

- Photovoltaic materials (Materials properties that include light absorption, charge transport properties and stability)
- Electrochemical devices that involves ionic transport and their respective materials, e.g. dye sensitised solar cells

Fuel cells

- Basic device architecture and design on proton transport materials
- Design on Redox catalysts and co-catalysts
- Applications of fuel cells

Thermoelectric (TE) devices

- Phonon scattering, low thermal conductivity and high electrical conductivity TE materials
- TE materials design and Figure of merit

Photosynthesis

- Hydrogen Catalysts
- Water-oxidizing catalysts
- Photosensitizers
- Photocatalytic water splitting

Energy storage devices

- Super capacitors
- Batteries
- Smart grid

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

1.	Next Generation Photovoltaics: High Efficiency Through Full Spectrum Utilization -
	by A Marti, Antonio Luque, Institute of Physics (Great Britain), 2004
2.	Organic Photovoltaics: Mechanism, Materials, and Devices
	by Sam-Shajing Sun, Niyazi Serdar Sariciftci
	Published by CRC Press, 2005
3.	The Materials Science of Semiconductors
	By Angus Rockett
	Edition: illustrated
	Published by Springer, 2007

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

1.	Journal								
	Nature	Materials,	Nature	Photonics,	Advanced	Materials,	American	Chemical	Society
	Journal								