EE6430

Form 2B

City University of Hong Kong

Information on a Course offered by Department of Electronic Engineering with effect from Semester A 2012/13

Part I

Course Title:	Discrete Time Control Systems
Course Code:	EE6430
Course Duration:	One Semester (13 weeks)
No. of credits:	3
Level:	P6
Medium of Instruction:	English
Prerequisites :	Nil
Precursors :	EE3114 Systems and Control; or equivalent
Equivalent Course :	
Exclusive Courses:	

Part II

Course Aims:

This course aims to provide students with knowledge of modern control system, covering the topics of state space control design, online identification techniques, and real time control implementation.

Course Intended Learning Outcomes (CILOs)

Upon successful completion of this course, students should be able to:

No.	CILOs
1.	Apply state space control design and analyse the performance of the controlled system
2.	Apply online identification techniques to obtain the system model of a plant
3.	Construct real time control system

Teaching and Learning Activities (TLAs)

(Indicative of likely activities and tasks designed to facilitate students' achievement of the CILOs. Final details will be provided to students in their first week of attendance in this course)

CILO	Teaching and Learning Activities
CILO	Lecture, tutorial, in-class exercise and mini-project
1,2,3	

Timetabling Information

Pattern	Hours
Lecture:	26
Tutorials:	13*
Laboratory:	
Other activities:	

* Some tutorials will be conducted in the laboratory and students are to apply the methodology learnt in the course for controlling a practical system.

Assessment Tasks/Activities

(Indicative of likely activities and tasks designed to assess how well the students achieve the CILOs. Final details will be provided to students in their first week of attendance in this course)

	Type of assessment tasks	Weighting (if applicable)
Continuous Assessment	Quizzes, Test, Mini-project	60%
	and report	
Examination	Written examination	40% 2 hours

Remarks:. To pass the course, students are required to achieve at least 35% in course work and 35% in the examination.

Grading of Student Achievement:

Refer to Grading of Courses in the Academic Regulations for Taught Postgraduate Degrees.

Letter Grade	Grade Point	Grade Definitions
A+	4.3	Excellent
Α	4.0	
A-	3.7	
B+	3.3	Good
В	3.0	
B-	2.7	
C+	2.3	Adequate
С	2.0	
C-	1.7	
D	1.0	Marginal
F	0.0	Failure

Constructive Alignment with Programme Outcomes

PILO	How the course contribute to the specific PILO(s)
1,2,3,4,5	This course aims to provide students with knowledge in the major areas of discrete time control systems. Upon completion of this course, students will gain general knowledge of control design for real time control engineering.
2,3,4,5	Students are required to complete an assignment designed to gain practical hands-on experience on how real time control are carried out.

Part III

Keyword Syllabus:

Fundamentals

Introduction to basic control engineering concept, discrete time fundamentals, D/A and A/D designs, sampling theorem

Control methodology Classical control design, state space feedback control, observer design, optimal control

Real time Implementation Real time UD identification, real time control

Recommended Reading:

Discrete Time Control Systems, Katsuhiko Ogata, Prentice Hall

Online Resources (if any)

Nil