City University of Hong Kong Course Syllabus

offered by Department of Materials Science and Engineering with effect from Semester A 2022/23

Part I Course Overview

Course Title:	Corrosion and Surface Engineering
Course Code:	MSE6303
Course Duration:	One semester
Credit Units:	3
Level:	P6
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites: (Course Code and Title)	Nil
Precursors: (Course Code and Title)	Nil
Equivalent Courses: (Course Code and Title)	AP6303 Corrosion and Surface Engineering (From the old curriculum)
	AP8170 Environmental Degradation (From the old curriculum)
Exclusive Courses: (Course Code and Title)	AP8303 Corrosion and Surface Engineering (From the old curriculum)

Part II Course Details

1. Abstract

To provide fundamental and practical understanding of corrosion behavior of metallic materials and surface engineering.

2. Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs	Weighting*	Discov	-	
		(if	curricu	lum rel	ated
		applicable)	learnin	g outco	omes
			(please	tick	where
			approp	riate)	
			A1	A2	A3
1.	Describe the basis of electrochemistry, passivation				
	and corrosion rates.				
2.	Contrast the basis of various forms of corrosion,				
	breakdown of passivation and materials selection.			,	,
3.	Carry out standard corrosion test and interpret the test				
	data.				
4.	Innovatively apply the various surface engineering				
	techniques.				
* If w	eighting is assigned to CILOs, they should add up to 100%.	100%			

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs)

(TLAs designed to facilitate students' achievement of the CILOs.)

TLA	Brief Description	CIL	O No.		Hours/week (if		
	_	1	2	3	4		applicable)
Lecture	Explain principles of						12 hrs
	electrochemistry and kinetics						
Lecture and	Mechanisms of various corrosion						10 hrs
tutorial	attacks, material selection						
Laboratory	Polarization test and corrosion rate						3 hrs
	measurements						
Lecture and	Discuss the proper use of coatings						9 hrs
group	for the protection of metals against						
discussion	corrosion						

4. Assessment Tasks/Activities (ATs) (ATs are designed to assess how well the students achieve the CILOs.)

Assessment	CILO No.				Weighting*	Remarks	
Tasks/Activities		1 2 3 4					
Continuous Assessment: 40 %	Continuous Assessment: 40 %						
Coursework assignments						20%	
Writing laboratory report and						20%	
analysis of experimental data							
Examination (duration: 2 hours)						60%	
* The weightings should add up to 100%.					100%		

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Assessment Task	Criterion	Excellent	Good	Marginal	Failure
		(A+, A, A-)	(B+, B)	(B-C+, C)	(F)
1. Coursework	Understanding fundamentals of	High	Moderate	Basic	Not even reaching marginal levels
assignments	electrochemistry, corrosion, materials selection				
	and coatings for corrosion protection				
2.Laboratory report	Ability to perform experiment and analyse the	High	Moderate	Basic	Not even reaching marginal levels
	data				
3.Final examination	Ability to explain and analyse various	High	Moderate	Basic	Not even reaching marginal levels
	corrosion mechanisms and capability of	C			
	selecting materials against corrosion				

Applicable to students admitted in Semester A 2022/23 and thereafter

Applicable to students admitted before Semester A 2022/23

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
1. Coursework	Understanding fundamentals of	High	Significant	Moderate	Basic	Not even reaching
assignments	electrochemistry, corrosion, materials selection					marginal levels
	and coatings for corrosion protection					
2.Laboratory report	Ability to perform experiment and analyse the	High	Significant	Moderate	Basic	Not even reaching
	data					marginal levels
3.Final examination	Ability to explain and analyse various	High	Significant	Moderate	Basic	Not even reaching
	corrosion mechanisms and capability of	-	-			marginal levels
	selecting materials against corrosion					

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

- •Overview of electrode potential
- •Nernst equation, Pourbaix diagram
- •Anodic and cathodic protection
- •Electrode kinetics, passivation, forms of corrosion
- •Materials selection
- •Plasma spraying
- •Laser alloying
- •Ion implantation

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

1.	Corrosion Engineering, by Mars G Fontana, McGraw -Hill (1986)				
2	Principles and Prevention of Corrosion, by Denny A Jones, MacMillan Publishing				
2.	Company (1996)				

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

Nil